Construct validity of a video-tracking system based on orthogonal cameras approach for objective assessment of laparoscopic skills

  • Fernando Pérez-Escamirosa
  • Alberto Chousleb-Kalach
  • Maria del Carmen Hernández-Baro
  • Juan Alberto Sánchez-Margallo
  • Daniel Lorias-Espinoza
  • Arturo Minor-Martínez
Original Article



This study was aimed to establish the construct validity of a video-tracking system based on orthogonal cameras approach for assessment of laparoscopic psychomotor skills in training environments.


The camera-tracking system consists of two webcams placed in orthogonal configuration at a distance of 13.5 cm. The orthogonal cameras employ a color segmentation algorithm to register the 3D motions of the laparoscopic instruments using colored tapes placed on the distal end. For construct validity, 31 participants (4 experts and 27 residents) performed three training tasks in a laparoscopic box trainer with the built-in orthogonal cameras system. Eleven motion-related parameters were used to evaluate their performance. Statistical analysis was performed, and results between two groups were compared using a Mann–Whitney U-test.


Construct validity results showed statistical differences in almost all motion-related parameters for assessment of laparoscopic technical skills. Results demonstrated that the orthogonal video-based tracking system was able to differentiate laparoscopic experience between experts and trainees surgeons.


The orthogonal cameras system was successfully validated in a laparoscopic box trainer. This video-based tracking system was able to distinguish performance between experts and trainees surgeons, showing its potential as a reliable tool to assess laparoscopic psychomotor skills. The orthogonal cameras allow incorporating the advantages of this video motion-tracking technology with the benefits of the traditional laparoscopic box trainers, creating realistic haptic feedback and allowing the evaluation of psychomotor skills of the surgeons.


Laparoscopic surgery Orthogonal cameras system Video-based tracking Motion analysis Objective evaluation  Validation 


  1. 1.
    Seitz G, Seitz EM, Kasparek MS, Königsrainer A, Kreis ME (2008) Long-term quality-of-life after open and laparoscopic sigmoid colectomy. Surg Laparosc Endosc Percutaneous Tech 18:162–7. doi:10.1097/SLE.0b013e3181661444 CrossRefGoogle Scholar
  2. 2.
    Delaney CP, Chang E, Senagore AJ, Broder M (2008) Clinical outcomes and resource utilization associated with laparoscopic and open colectomy using a large national database. Ann Surg 247:819–24CrossRefPubMedGoogle Scholar
  3. 3.
    Staudacher C, Vignali A (2010) Laparoscopic surgery for rectal cancer: the state of the art. World J Gastrointest Surg 2:275–282CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558CrossRefPubMedGoogle Scholar
  5. 5.
    Subramonian K, DeSylva S, Bishai P, Thompson P, Muir G (2004) Acquiring surgical skills: a comparative study of open versus laparoscopic surgery. Eur Urol 45(3):346–351CrossRefPubMedGoogle Scholar
  6. 6.
    Ritter EM, Scott DJ (2007) Design of a proficiency-based skills training curriculum for the fundamentals of laparoscopic surgery. Surg Innov 14:107–112CrossRefPubMedGoogle Scholar
  7. 7.
    Bridges M, Diamond DL (1999) The financial impact of teaching surgical residents in the operating room. Am J Surg 177:28–32CrossRefPubMedGoogle Scholar
  8. 8.
    Martinez AM, Kalach AC, Espinoza DL (2008) Millimetric laparoscopic surgery training on a physical trainer using rats. Surg Endosc 22:246–9CrossRefPubMedGoogle Scholar
  9. 9.
    Hinata N, Iwamoto H, Morizane S, Hikita K, Yao A, Muraoka K, Honda M, Isoyama T, Sejima T, Takenaka A (2013) Dry box training with three-dimensional vision for the assistant surgeon in robot-assisted urological surgery. Int J Urol 20:1037–41. doi:10.1111/iju.12101 CrossRefPubMedGoogle Scholar
  10. 10.
    Kovac E, Azhar RA, Quirouet A, Delisle J, Anidjar M (2012) Construct validity of the LapSim virtual reality laparoscopic simulator within a urology residency program. Can Urol Assoc J 6:253–9. doi:10.5489/cuaj.12047 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    von Websky MW, Vitz M, Raptis DA, Rosenthal R, Clavien PA, Hahnloser D (2012) Basic laparoscopic training using the Simbionix LAP Mentor: setting the standards in the novice group. J Surg Educ 69:459–67. doi:10.1016/j.jsurg.2011.12.006 CrossRefGoogle Scholar
  12. 12.
    Loukas C, Nikiteas N, Schizas D, Lahanas V, Georgiou E (2012) A head-to-head comparison between virtual reality and physical reality simulation training for basic skills acquisition. Surg Endosc 26:2550–8. doi:10.1007/s00464-012-2230-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Sankaranarayanan G, Lin H, Arikatla VS, Mulcare M, Zhang L, Derevianko A, Lim R, Fobert D, Cao C, Schwaitzberg SD, Jones DB, De S (2010) Preliminary face and construct validation study of a virtual basic laparoscopic skill trainer. J Laparoendosc Adv Surg Tech A 20:153–7. doi:10.1089/lap.2009.0030 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Botden SM, Buzink SN, Schijven MP, Jakimowicz JJ (2008) ProMIS augmented reality training of laparoscopic procedures face validity. Simul Healthc 3:97–102. doi:10.1097/SIH.0b013e3181659e91 CrossRefPubMedGoogle Scholar
  15. 15.
    Pellen MG, Horgan LF, Barton JR, Attwood SE (2009) Construct validity of the ProMIS laparoscopic simulator. Surg Endosc 23:130–9. doi:10.1007/s00464-008-0066-y CrossRefPubMedGoogle Scholar
  16. 16.
    Stylopoulos N, Cotin S, Maithel SK, Ottensmeye M, Jackson PG, Bardsley RS, Neumann PF, Rattner DW, Dawson SL (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc 18:782–789CrossRefPubMedGoogle Scholar
  17. 17.
    Yamaguchi S, Yoshida D, Kenmotsu H, Yasunaga T, Konishi K, Ieiri S, Nakashima H, Tanoue K, Hashizume M (2011) Objective assessment of laparoscopic suturing skills using a motion-tracking system. Surg Endosc 25:771–5. doi:10.1007/s00464-010-1251-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Rosen J, Brown JD, Barreca M, Chang L, Hannaford B, Sinanan M (2002) The Blue DRAGON—a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. Stud Health Technol Inform 85:412–418PubMedGoogle Scholar
  19. 19.
    Egi H, Okajima M, Yoshimitsu M, Ikeda S, Miyata Y, Masugami H, Kawahara T, Kurita Y, Kaneko M, Asahara T (2008) Objective assessment of endoscopic surgical skills by analyzing direction-dependent dexterity using the Hiroshima University Endoscopic Surgical Assessment Device (HUESAD). Surg Today 38:705–10. doi:10.1007/s00595-007-3696-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Chmarra MK, Bakker NH, Grimbergen CA, Dankelman J (2006) TrEndo, a device for tracking minimally invasive surgical instruments in training setups. Sens Actuators A Phys 126:328–334CrossRefGoogle Scholar
  21. 21.
    Oropesa I, Sánchez-González P, Chmarra MK, Lamata P, Fernández A, Sánchez-Margallo JA, Jansen FW, Dankelman J, Sánchez-Margallo FM, Gómez EJ (2013) EVA: laparoscopic instrument tracking based on endoscopic video analysis for psychomotor skills assessment. Surg Endosc 27:1029–39. doi:10.1007/s00464-012-2513-z CrossRefPubMedGoogle Scholar
  22. 22.
    Partridge RW, Hughes MA, Brennan PM, Hennessey IA (2014) Accessible laparoscopic instrument tracking (“InsTrac”): construct validity in a take-home box simulator. J Laparoendosc Adv Surg Tech A 24:578–583. doi:10.1089/lap.2014.0015 CrossRefPubMedGoogle Scholar
  23. 23.
  24. 24.
    Prokop RJ, Reeves AP (1992) A survey of moment-based techniques for unoccluded object representation and recognition, CVGIP. Graph Models Image Process 54:438–460. doi:10.1016/1049-9652(92)90027-U CrossRefGoogle Scholar
  25. 25.
    Hartley RI, Sturm PF (1997) Triangulation. Comput Vis Image Underst 68:146–157. doi:10.1006/cviu.1997.0547 CrossRefGoogle Scholar
  26. 26.
    Pérez F, Sossa H, Martínez R, Lorias D, Minor A (2013) Video-based tracking of laparoscopic instruments using an orthogonal webcams system. World Acad Sci Eng Technol Int J Med Health Pharm Biomed Eng 7:184–187Google Scholar
  27. 27.
    Fraser SA, Klassen DR, Feldman LS, Ghitulescu GA, Stanbridge D, Fried GM (2003) Evaluating laparoscopic skills: setting the pass/fail score for the MISTELS system. Surg Endosc 17(6):964–967Google Scholar
  28. 28.
    Chmarra MK, Kolkman W, Jansen FW, Grimbergen CA, Dankelman J (2007) The influence of experience and camera holding on laparoscopic instrument movements with the TrEndo tracking system. Surg Endosc 21:2069–2075CrossRefPubMedGoogle Scholar
  29. 29.
    Hofstad EF, Våpenstad C, Chmarra MK, Langø T, Kuhry E, Mårvik R (2013) A study of psychomotor skills in minimally invasive surgery: what differentiates expert and nonexpert performance. Surg Endosc 27:854–863. doi:10.1007/s00464-012-2524-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Escamirosa FP, Flores RM, García IO, Vidal CR, Martínez AM (2014) Face, content, and construct validity of the EndoViS training system for objective assessment of psychomotor skills of laparoscopic surgeons. Surg Endosc 29(11):3392–403. doi:10.1007/s00464-014-4032-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Oropesa I, Chmarra MK, Sánchez-González P, Lamata P, Rodrigues SP, Enciso S, Sánchez-Margallo FM, Jansen FW, Dankelman J, Gómez EJ (2013) Relevance of motion-related assessment metrics in laparoscopic surgery. Surg Innov 20:299–312. doi:10.1177/1553350612459808 CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Fernando Pérez-Escamirosa
    • 1
    • 2
  • Alberto Chousleb-Kalach
    • 3
  • Maria del Carmen Hernández-Baro
    • 3
  • Juan Alberto Sánchez-Margallo
    • 4
  • Daniel Lorias-Espinoza
    • 1
  • Arturo Minor-Martínez
    • 1
  1. 1.Bioelectronics Section, Department of Electrical EngineeringCenter for Research and Advanced Studies of the National Polytechnic Institute of Mexico (CINVESTAV-IPN)MexicoMexico
  2. 2.Department of Surgery, Faculty of MedicineNational Autonomous University of Mexico (UNAM)MexicoMexico
  3. 3.Department of Experimental SurgeryThe American British Cowdray Medical Center, I.A.P (ABC)MexicoMexico
  4. 4.Bioengineering and Health Technologies UnitJesús Usón Minimally Invasive Surgery CentreCáceresSpain

Personalised recommendations