Extra-abdominal dual-energy CT applications: a comprehensive overview

  • Giuseppe CiceroEmail author
  • Giorgio Ascenti
  • Moritz H. Albrecht
  • Alfredo Blandino
  • Marco Cavallaro
  • Tommaso D’Angelo
  • Maria Ludovica Carerj
  • Thomas J. Vogl
  • Silvio Mazziotti


Unlike conventional computed tomography, dual-energy computed tomography is a relatively novel technique that exploits ionizing radiations at different energy levels. The separate radiation sets can be achieved through different technologies, such as dual source, dual layers or rapid switching voltage. Body tissue molecules vary for their specific atomic numbers and electron density, and the interaction with different sets of radiations results in different attenuations, allowing to their final distinction. In particular, iodine recognition and quantification have led to important information about intravenous contrast medium delivery within the body. Over the years, useful post-processing algorithms have also been validated for improving tissue characterization. For instance, contrast resolution improvement and metal artifact reduction can be obtained through virtual monoenergetic images, dose reduction by virtual non-contrast reconstructions and iodine distribution highlighting through iodine overlay maps. Beyond the evaluation of the abdominal organs, dual-energy computed tomography has also been successfully employed in other anatomical districts. Although lung perfusion is one of the most investigated, this evaluation has been extended to narrowly fields of application, such as musculoskeletal, head and neck, vascular and cardiac. The potential pool of information provided by dual-energy technology is already wide and not completely explored, yet. Therefore, its performance continues to raise increasing interest from both radiologists and clinicians.


Dual-energy CT Iodine overlay Virtual monoenergetic imaging Virtual non-calcium Bone removal 



The authors declare that they received no funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Forghani R, De Man B, Gupta R (2017) Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 1. Neuroimaging Clin N Am 27:371–384PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Forghani R, Srinivasan A, Forghani B (2017) Advanced tissue characterization and texture analysis using dual-energy computed tomography: horizons and emerging applications. Neuroimaging Clin N Am 27:533–546PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Parakh A, Macri F, Sahani D (2018) Dual-energy computed tomography: dose reduction, series reduction, and contrast load reduction in dual-energy computed tomography. Radiol Clin North Am 56:601–624PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hounsfield GN (1973) Computerized transverse axial scanning (tomography). I. Description of system. Br J Radiol 46:1016–1022PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, Sahani DV (2016) Material separation using dual-energy CT: current and emerging applications. RadioGraphics 36:1087–1105PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, Marin D, Gupta RT, Schindera ST (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? RadioGraphics 30:1037–1055PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Forghani R, De Man B, Gupta R (2017) Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 2. Neuroimaging Clin N Am 27:385–400PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen1. Radiology 271:327–342PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wortman JR, Shyu JY, Fulwadhva UP, Sodickson AD (2019) Impact analysis of the routine use of dual-energy computed tomography for characterization of incidental renal lesions. J Comput Assist Tomogr 43:176–182PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Megibow AJ, Kambadakone A, Ananthakrishnan L (2018) Dual-energy computed tomography: image acquisition, processing, and workflow. Radiol Clin North Am 56(507–520):4Google Scholar
  12. 12.
    Patel BN, Marin D (2018) Strategies to improve image quality on dual-energy computed tomography. Radiol Clin North Am 56:641–647PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rajiah P, Halliburton S (2015) Technical aspects of DECT with dual layer detectors. In: Carrascosa P, Cury R, García M, Leipsic J (eds) Dual-energy CT in cardiovascular imaging. Springer, ChamGoogle Scholar
  14. 14.
    Holmes DR 3rd, Fletcher JG, Apel A, Huprich JE, Siddiki H, Hough DM, Schmidt B, Flohr TG, Robb R, McCollough C, Wittmer M, Eusemann C (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Apel A, Fletcher JG, Fidler JL, Hough DM, Yu L, Guimaraes LS, Bellemann ME, McCollough CH, Holmes DR 3rd, Eusemann CD (2011) Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non-linear blending of mixed kV image datasets. Eur Radiol 21:644–652PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49:586–592PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lu GM, Zhao Y, Zhang LJ, Schoepf UJ (2012) Dual-energy CT of the lung. AJR Am J Roentgenol 199:40–53CrossRefGoogle Scholar
  18. 18.
    D’Angelo T, Bucher AM, Lenga L, Arendt CT, Peterke JL, Caruso D, Mazziotti S, Blandino A, Ascenti G, Othman AE, Martin SS, Leithner D, Vogl TJ, Wichmann JL (2018) Optimisation of window settings for traditional and noise-optimised virtual monoenergetic imaging in dual-energy computed tomography pulmonary angiography. Eur Radiol 28:1393–1401PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hwang HJ, Hoffman EA, Lee CH, Goo JM, Levin DL, Kauczor HU, Seo JB (2017) The role of dual-energy computed tomography in the assessment of pulmonary function. Eur J Radiol 86:320–334PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JAO, Kalra MK (2016) Dual-energy CT: spectrum of thoracic abnormalities. RadioGraphics 36:38–52PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Masy M, Giordano J, Petyt G, Hossein-Foucher C, Duhamel A, Kyheng M, De Groote P, Fertin M, Lamblin N, Bervar JF, Remy J, Remy-Jardin M (2018) Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 28(12):5100–5110PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hong YJ, Kim JY, Choe KO, Hur J, Lee HJ, Choi BW, Kim YJ (2013) Different perfusion pattern between acute and chronic pulmonary thromboembolism: evaluation with two-phase dual-energy perfusion CT. AJR Am J Roentgenol 200:812–817PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kang MJ, Park CM, Lee CH, Goo JM, Lee HJ (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics 30:685–698PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Im DJ, Hur J, Han KH, Lee HJ, Kim YJ, Kwon W, Choi BW (2017) Acute pulmonary embolism: retrospective cohort study of the predictive value of perfusion defect volume measured with dual-energy CT. AJR Am J Roentgenol 209:1015–1022PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Weidman EK, Plodkowski AJ, Halpenny DF, Hayes SA, Perez-Johnston R, Zheng J, Moskowitz C, Ginsberg MS (2018) Dual-energy CT angiography for detection of pulmonary emboli: incremental benefit of iodine maps. Radiology 289:546–553PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yuan R, Shuman WP, Earls JP, Hague CJ, Mumtaz HA, Scott-Moncrieff A, Ellis JD, Mayo JR, Leipsic JA (2012) Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology 262:290–297PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dane B, Patel H, O’Donnell T, Girvin F, Brusca-Augello G, Alpert JB, Niu B, Attia M, Babb J, Ko JP (2018) Image quality on dual-energy CTPA virtual monoenergetic images: quantitative and qualitative assessment. Acad Radiol 25:1075–1086PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Leithner D, Wichmann JL, Vogl TJ, Trommer J, Martin SS, Scholtz JE, Bodelle B, De Cecco CN, Duguay T, Nance JW Jr, Schoepf UJ, Albrecht MH (2017) Virtual monoenergetic imaging and iodine perfusion maps improve diagnostic accuracy of dual-energy computed tomography pulmonary angiography with suboptimal contrast attenuation. Invest Radiol 52:659–665PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zhang LJ, Yang GF, Wu SY, Xu J, Lu GM, Schoepf UJ (2013) Dual-energy CT imaging of thoracic malignancies. Cancer Imaging 13:81–91PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chae EJ, Song JW, Krauss B, Song KS, Lee CW, Lee HJ, Seo JB (2010) Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging 25:301–310PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Iwano S, Ito R, Umakoshi H, Ito S, Naganawa S (2015) Evaluation of lung cancer by enhanced dual-energy CT: association between three-dimensional iodine concentration and tumour differentiation. Br J Radiol 88:20150224PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hou WS, Wu HW, Yin Y, Cheng JJ, Zhang Q, Xu JR (2015) Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad Radiol 22:337–344PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Shimamoto H, Iwano S, Umakoshi H, Kawaguchi K, Naganawa S (2016) Evaluation of locoregional invasiveness of small-sized non-small cell lung cancers by enhanced dual-energy computed tomography. Cancer Imaging 16:18PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schmid-Bindert G, Henzler T, Chu TQ, Meyer M, Nance JW Jr, Schoepf UJ, Dinter DJ, Apfaltrer P, Krissak R, Manegold C, Schoenberg SO, Fink C (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ito R, Iwano S, Shimamoto H, Umakoshi H, Kawaguchi K, Ito S, Kato K, Naganawa S (2017) A comparative analysis of dual-phase dual-energy CT and FDG-PET/CT for the prediction of histopathological invasiveness of non-small cell lung cancer. Eur J Radiol 95:186–191PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Li GJ, Gao J, Wang GL, Zhang CQ, Shi H, Deng K (2016) Correlation between vascular endothelial growth factor and quantitative dual-energy spectral CT in non-small-cell lung cancer. Clin Radiol 714:363–368CrossRefGoogle Scholar
  37. 37.
    Yanagawa M, Morii E, Hata A, Fujiwara M, Gyobu T, Ueda K, Honda O, Tomiyama N (2016) Dual-energy dynamic CT of lung adenocarcinoma: correlation of iodine uptake with tumor gene expression. Eur J Radiol 85:1407–1413PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hong SR, Hur J, Moon YW, Han K, Chang S, Kim JY, Im DJ, Suh YJ, Hong YJ, Lee HJ, Kim YJ, Choi BW (2018) Predictive factors for treatment response using dual-energy computed tomography in patients with advanced lung adenocarcinoma. Eur J Radiol 101:118–123PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kawai T, Shibamoto Y, Hara M, Arakawa T, Nagai K, Ohashi K (2011) Can dual-energy CT evaluate contrast enhancement of ground-glass attenuation? Phantom and preliminary clinical studies. Acad Radiol 18:682–689PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Y, Tang J, Xu J, Cheng J, Wu H (2017) Analysis of pulmonary pure ground-glass nodule in enhanced dual energy CT imaging for predicting invasive adenocarcinoma: comparing with conventional thin-section CT imaging. J Thorac Dis 9:4967–4978PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rizzo S, Radice D, Femia M, De Marco P, Origgi D, Preda L, Barberis M, Vigorito R, Mauri G, Mauro A, Bellomi M (2018) Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT. Eur Radiol 28:760–769PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lee SH, Hur J, Kim YJ, Lee HJ, Hong YJ, Choi BW (2013) Additional value of dual-energy CT to differentiate between benign and malignant mediastinal tumors: an initial experience. Eur J Radiol 82:2043–2049PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Okamura Y, Yoshizawa N, Yamaguchi M, Kashiwakura I (2016) Application of dual-energy computed tomography for breast cancer diagnosis. Int J Med Phys Clin Eng Radiat Oncol 5:288–297CrossRefGoogle Scholar
  44. 44.
    Glazebrook KN, Doerge S, Leng S, Drees TA, Hunt KN, Zingula SN, Pruthi S, Geske JR, Carter RE, McCollough CH, Fletcher JG (2019) Ability of dual-energy ct to detect silicone gel breast implant rupture and nodal silicone spread. AJR Am J Roentgenol 212:933–942PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Volterrani L, Gentili F, Fausto A et al (2019) Dual-energy computed tomography for locoregional staging of breast cancer; preliminary results. AJR Am J Roentgenol (in press)Google Scholar
  46. 46.
    Albrecht MH, De Cecco CN, Schoepf UJ, Spandorfer A, Eid M, De Santis D, Varga-Szemes A, van Assen M, von Knebel-Doeberitz PL, Tesche C, Puntmann VO, Nagel E, Vogl TJ, Nance JW (2018) Dual-energy CT of the heart current and future status. Eur J Radiol 105:110–118PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18:2414–2424PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rubinshtein R, Miller TD, Williamson EE, Kirsch J, Gibbons RJ, Primak AN, McCollough CH, Araoz PA (2009) Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart Br Card Soc 95:1419–1422CrossRefGoogle Scholar
  49. 49.
    Carrascosa PM, Deviggiano A, Capunay C, Campisi R, López de Munain M, Vallejos J, Tajer C, Rodriguez-Granillo GA (2015) Incremental value of myocardial perfusion over coronary angiography by spectral computed tomography in patients with intermediate to high likelihood of coronary artery disease. Eur J Radiol 84:637–642PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nakahara T, Toyama T, Jinzaki M, Seki R, Saito Y, Higuchi T, Yamada M, Arai M, Tsushima Y, Kuribayashi S, Kurabayashi M (2017) Quantitative analysis of iodine image of dual-energy computed tomography at rest: comparison with 99mTc-tetrofosmin stress-rest single-photon emission computed tomography myocardial perfusion imaging as the reference standard. J Thorac Imaging 2:97–104Google Scholar
  51. 51.
    Arnoldi E, Lee YS, Ruzsics B, Weininger M, Spears JR, Rowley CP, Chiaramida SA, Costello P, Reiser MF, Schoepf UJ (2011) CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr 5:421–429PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Albrecht MH, De Cecco CN, Nance JW Jr, Varga-Szemes A, De Santis D, Eid M, Tesche G, Apfaltrer G, von Knebel Doeberitz PL, Jacobs B, Vogl TJ, Schoepf UJ (2017) Cardiac dual-energy CT applications and clinical impact. Curr Radiol Rep 5:42CrossRefGoogle Scholar
  53. 53.
    Mangold S, Cannaó PM, Schoepf UJ, Wichmann JL, Canstein C, Fuller SR, Muscogiuri G, Varga-Szemes A, Nikolaou K, De Cecco CN (2016) Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study. Eur Radiol 26:1871–1878PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hickethier T, Baeßler B, Kroeger JR, Doerner J, Pahn G, Maintz D, Michels G, Bunck AC (2017) Monoenergetic reconstructions for imaging of coronary artery stents using spectral detector CT: in-vitro experience and comparison to conventional images. J Cardiovasc Comput Tomogr 11:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Schwarz F, Nance JW Jr, Ruzsics B, Bastarrika G, Sterzik A, Schoepf UJ (2012) Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology 264:700–707PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Vlahos I, Chung R, Nair A, Morgan R (2012) Dual-energy CT: vascular applications. AJR Am J Roentgenol 199:87–97CrossRefGoogle Scholar
  57. 57.
    Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S, Mileto A, Scribano E (2011) Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol 196:1408–1414PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Martin SS, Wichmann JL, Weyer H, Scholtz JE, Leithner D, Spandorfer A, Bodelle B, Jacobi V, Vogl TJ, Albrecht MH (2017) Endoleaks after endovascular aortic aneurysm repair: improved detection with noise-optimized virtual monoenergetic dual-energy CT. Eur J Radiol 94:125–132PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    De Santis D, Eid M, De Cecco CN, Jacobs BE, Albrecht MH, Varga-Szemes A, Tesche C, Caruso D, Laghi A, Schoepf UJ (2018) Dual-energy computed tomography in cardiothoracic vascular imaging. Radiol Clin North Am 56:521–534PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    D’Angelo T, Mazziotti S, Ascenti G, Wichmann JL (2017) Miscellaneous and emerging applications of dual-energy computed tomography for the evaluation of pathologies in the head and neck. Neuroimaging Clin N Am 27:469–482PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tawfik AM, Bodelle B, Vogl TJ (2015) Dual energy CT in head and neck tumors. In: De Cecco C, Laghi A, Schoepf U, Meinel F (eds) Dual energy CT in oncology. Springer, ChamGoogle Scholar
  62. 62.
    Forghani R, Kelly HR, Curtin HD (2017) Applications of dual-energy computed tomography for the evaluation of head and neck squamous cell carcinoma. Neuroimaging Clin N Am 27:445–459PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Roele ED, Timmer VCML, Vaassen LAA, van Kroonenburgh AMJL, Postma AA (2017) Dual-energy CT in head and neck imaging. Curr Radiol Rep 5:19PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lam S, Gupta R, Levental M, Yu E, Curtin HD, Forghani R (2015) Optimal virtual monochromatic images for evaluation of normal tissues and head and neck cancer using dual-energy CT. AJNR Am J Neuroradiol 36:1518–1524PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Albrecht MH, Scholtz JE, Kraft J, Bauer RW, Kaup M, Dewes P, Bucher AM, Burck I, Wagenblast J, Lehnert T, Kerl JM, Vogl TJ, Wichmann JL (2015) Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer. Eur Radiol 25:2493PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Yamauchi H, Buehler M, Goodsitt MM, Keshavarzi N, Srinivasan A (2016) Dual-energy CT-based differentiation of benign posttreatment changes from primary or recurrent malignancy of the head and neck: comparison of spectral hounsfield units at 40 and 70 keV and iodine concentration. AJR Am J Roentgenol 206:580–587PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kuno H, Onaya H, Iwata R, Kobayashi T, Fujii S, Hayashi R, Otani K, Ojiri H, Yamanaka T, Satake M (2012) Evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma with dual-energy CT. Radiology 265:488–496PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Forghani R, Levental Gupta R, Lam S, Dadfar N, Curtin HD (2015) Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage. AJNR Am J Neuroradiol 36:1194–1200PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tawfik AM, Razek AA, Kerl JM, Nour-Eldin NE, Bauer R, Vogl TJ (2014) Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes. Eur Radiol 24:574–580PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Liu X, Ouyang D, Li H, Zhang R, Lv Y, Yang A, Xie C (2015) Papillary thyroid cancer: dual-energy spectral CT quantitative parameters for preoperative diagnosis of metastasis to the cervical lymph nodes. Radiology 275:167–176PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Magarelli N, De Santis V, Marziali G, Menghi A, Burrofato A, Pedone L, Del Prete D, Iezzi R, de Waure C, D’andrea M, Leone A, Colosimo C (2018) Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med 123:593–600PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Komlosi P, Wintermark M (2017) Dual energy computed tomography applications for the evaluation of the spine. Neuroimaging Clin N Am 27:483–487PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Alabsi H, Alreshoodi S, Low E, Sultan N, Murray N, Mallinson P, Munk PL, Ouellette HA (2017) Advancements in dual-energy CT applications for musculoskeletal imaging. Curr Radiol Rep 5:58CrossRefGoogle Scholar
  74. 74.
    Pisaniello HL, Lester S, Gonzalez-Chica D, Stocks N, Longo M, Sharplin GR, Dal Grande E, Gill TK, Whittle SL, Hill CL (2018) Gout prevalence and predictors of urate-lowering therapy use: results from a population-based study. Arthritis Res Ther 20:143PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ogdie A, Taylor WJ, Weatherall M, Fransen J, Jansen TL, Neogi T, Schumacher HR, Dalbeth N (2015) Imaging modalities for the classification of gout: systematic literature review and meta-analysis. Ann Rheum Dis 74:1868–1874PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Baer AN, Kurano T, Thakur UJ, Thawait GK, Fuld MK, Maynard JW, McAdams-DeMarco M, Fishman EK, Carrino JA (2016) Dual-energy computed tomography has limited sensitivity for non-tophaceous gout: a comparison study with tophaceous gout. BMC Musculoskelet Disord 18(17):91CrossRefGoogle Scholar
  77. 77.
    Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA (2016) Dual-energy CT for the musculoskeletal system. Radiology 281:690–707PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Biondi M, Vanzi E, De Otto G, Banci Buonamici F, Belmonte GM, Mazzoni LN, Guasti A, Carbone SF, Mazzei MA, La Penna A, Foderà E, Guerreri D, Maiolino A, Volterrani L (2016) Water/cortical bone decomposition: a new approach in dual energy CT imaging for bone marrow oedema detection. A feasibility study. Phys Med 32:1712–1716PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    D’Angelo T, Cicero G, Mazziotti S, Ascenti G, Albrecht MH, Martin SS, Othman AE, Vogl TJ, Wichmann JL (2019) Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 92:20180546PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2020

Authors and Affiliations

  • Giuseppe Cicero
    • 1
    Email author
  • Giorgio Ascenti
    • 1
  • Moritz H. Albrecht
    • 2
  • Alfredo Blandino
    • 1
  • Marco Cavallaro
    • 1
    • 2
  • Tommaso D’Angelo
    • 1
  • Maria Ludovica Carerj
    • 1
  • Thomas J. Vogl
    • 2
  • Silvio Mazziotti
    • 1
  1. 1.Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity Hospital FrankfurtFrankfurt am MainGermany

Personalised recommendations