Advertisement

In vivo radiation dosimetry and image quality of turbo-flash and retrospective dual-source CT coronary angiography

  • Nicolò Schicchi
  • Alberto Mari
  • Marco FoganteEmail author
  • Paolo Esposto Pirani
  • Giacomo Agliata
  • Niccolò Tosi
  • Pierpaolo Palumbo
  • Ester Cannizzaro
  • Federico Bruno
  • Alessandra Splendiani
  • Ernesto Di Cesare
  • Stefania Maggi
  • Andrea Giovagnoni
CARDIAC RADIOLOGY
  • 6 Downloads

Abstract

Purpose

To compare measured radiation dose (MD), estimated radiation dose (ED) and image quality in coronary computed tomography between turbo-flash (TFP) and retrospective protocol (RP) and correlate MD with size-specific dose estimates (SSDE).

Materials and methods

In this prospective study, we selected 68 patients (mean age, 59.2 ± 9.7 years) undergoing 192 × 2 dual-source CT (SOMATOM Force, Siemens) to rule out coronary artery disease. Thirty-one underwent TFP and 37 RP. To evaluate in vivo MD, thermoluminescent dosimeters were placed, superficially, at thyroid and heart level, left breast areola and left hemi-thorax. MD in each site, and ED parameters, such as volume CT dose index (CTDIvol), SSDE, dose length product (DLP), effective dose (E), were compared between two protocols with a t test. Image quality was compared between two protocols. Inter-observer agreement was evaluated with a kappa coefficient (k). In each protocol, MD was correlated with SSDE using a Pearson coefficient (r).

Results

Comparing TFP and RP, MD at thyroid (1.43 vs. 2.58 mGy; p = 0.0408), heart (3.58 vs. 28.72 mGy; p < 0.0001), left breast areola (3.00 vs. 24.21 mGy; p < 0.0001) and left hemi-thorax (2.68 vs. 24.03 mGy; p < 0.0001), CTDIvol, SSDE, DLP and E were significantly lower. Differences in image quality were not statistically significant. Inter-observer agreement was good (k = 0.796) in TFP and very good (k = 0.817) in RP. MD and SSDE excellently correlated with TFP (r = 0.9298, p < 0.0001) and RP (r = 0.9753, p < 0.0001).

Conclusions

With TFP, MD, CTDIvol, SSDE, DLP and E were significantly lower, than with RP. Image quality was similar between two protocols. MD correlated excellently with SSDE in each protocol.

Keywords

In vivo radiation dose Estimated radiation dose Coronary CT Dual-source CT 

List of abbreviations

AA

Ascending aorta

CAD

Coronary artery disease

CCT

Coronary computed tomography

CM

Contrast medium

CNR

Contrast-to-noise ratio

CTDIvol

Volume computed tomography dose index

DLP

Dose length product

DS

Dual source

E

Effective dose

ECG

Electrocardiogram

ED

Estimated dose

IN

Image noise

LAD

Left anterior descending artery

LCx

Left circumflex artery

LMC

Left main coronary artery

MD

Measured dose

RCA

Right coronary artery

RD

Radiation dose

ROI

Region of interest

RP

Retrospective protocol

SD

Standard deviation

SNR

Signal-to-noise ratio

SSDE

Size-specific dose estimate

TDL

Thermoluminescent dosimeter

TFP

Turbo-flash protocol

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standard

Conflict of interest

The authors declared no potential conflicts of interests associated with this study.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. Institutional review board approved the study.

References

  1. 1.
    Benjamin EJ et al (2018) Heart disease and stroke statistics-2018 update: a report from the American heart association. Circulation 137:e67–e492PubMedCrossRefGoogle Scholar
  2. 2.
    Sun Z, Lin C, Davidson R, Dong C, Liao Y (2008) Diagnostic value of 64-slice CT angiography in coronary artery disease: a systematic review. Eur J Radiol 67:78–84PubMedCrossRefGoogle Scholar
  3. 3.
    Ajlan AM, Heilbron BG, Leipsic J (2013) Coronary computed tomography angiography for stable angina: past, present, and future. Can J Cardiol 29:266–274PubMedCrossRefGoogle Scholar
  4. 4.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, Hunink MG (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244:419–428PubMedCrossRefGoogle Scholar
  5. 5.
    Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C (2007) 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 28:3042–3050PubMedCrossRefGoogle Scholar
  6. 6.
    Parikh JR, Geise RA, Bluth EI, Bender CE, Sze G, Jones AK (2017) Potential radiation-related effects on radiologists. AJR Am J Roentgenol 208(3):595–602PubMedCrossRefGoogle Scholar
  7. 7.
    Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284PubMedCrossRefGoogle Scholar
  8. 8.
    Hausleiter J, Meyer T, Hermann F, Hadamitsky M, Krebs M, Gerber TC et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507PubMedCrossRefGoogle Scholar
  9. 9.
    Raff GL, Chinnaiyan KM, Share DA, Goraya TY, Kazerooni EA, Moscucci M et al (2009) Radiation dose from cardiac computed tomography before and after implementation of radiation dose reduction techniques. JAMA 301:2340–2348PubMedCrossRefGoogle Scholar
  10. 10.
    Amis ES Jr et al (2007) American College of Radiology. American college of radiology white paper on radiation dose in medicine. J Am Coll Radiol 4:272–284PubMedCrossRefGoogle Scholar
  11. 11.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Subeta C, Grasruck M, Stierstorfer K et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  12. 12.
    Achenbach S, Anders K, Kalender W (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198PubMedCrossRefGoogle Scholar
  13. 13.
    Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–36812PubMedCrossRefGoogle Scholar
  14. 14.
    Stolzmann P, Goetti RP, Maurovich-Horvat P, Hoffmann U, Flohr TG, Leschka S et al (2011) Predictors of image quality in high-pitch coronary CT angiography. Am J Roentgenol 197:851–858CrossRefGoogle Scholar
  15. 15.
    Alkadhi H, Stolzmann P, Desbiolles L et al (2010) Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 96:933–938PubMedCrossRefGoogle Scholar
  16. 16.
    Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 msv using prospectively electrocardiogram triggered high-pitch spiral acquisition. Eur Heart J 31:340–346PubMedCrossRefGoogle Scholar
  17. 17.
    Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903PubMedCrossRefGoogle Scholar
  18. 18.
    Apfaltrer G et al (2017) Impact on image quality and radiation dose of third-generation dual-source computed tomography of the coronary arteries. Am J Cardiol 119(8):1156–1161PubMedCrossRefGoogle Scholar
  19. 19.
    Council Directive Euratom (2013) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/EuratomGoogle Scholar
  20. 20.
    ICRU (2005) Patient dosimetry for X rays used in medical imagingGoogle Scholar
  21. 21.
    IEC (2010) Particular requirements for the basic safety and essential performance of X-ray equipment for computed tomographyGoogle Scholar
  22. 22.
    AAPM (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinationsGoogle Scholar
  23. 23.
    Riccardi L, De Monte F, Cretti F, Pini S, Zucca S, Quattrocchi MG et al (2018) Use of radiation dose index monitoring software in a multicenter environment for CT dose optimization. Radiol Med 123(12):944–951PubMedCrossRefGoogle Scholar
  24. 24.
    McCollough CH, Leng S, Lifeng Y, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259(2):311e6CrossRefGoogle Scholar
  25. 25.
    Glenn FK (2010) Radiation detection and measurement, 4th edn. Wiley, New YorkGoogle Scholar
  26. 26.
    Toivonen M et al (1996) Organ dose determination of X-ray examinations using TL detectors for verification of computed doses. Radiat Prot Dosim 66:289–294CrossRefGoogle Scholar
  27. 27.
    Zzouzi-Idrissi M, Aubert B, Chavaudra J, Ricard M, Tajmouati J (2003) Optimizing the use of LiF: Mg, Cu, P GR-200 Pto measure low dose irradiation in nuclear medicine. Health Phys 84:483–491CrossRefGoogle Scholar
  28. 28.
    Olko P, Bilski P, Budzanowski M, Waligorski M, Fasso A, Ipe N (1999) Modeling of the thermoluminescence response of LiF: Mg, Cu, P MCP-N detectors after doses of low energy photons. Radiat Prot Dosim 84:103–108CrossRefGoogle Scholar
  29. 29.
    Thomsen H, Webb J (2014) Contrast media safety issues and ESUR guidelines. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Cademartiri F, Maffei E, Arcadi T, Catalano O, Midiri M (2013) CT coronary angiography at an ultra-low radiation dose (< 0.1 mSv): feasible and viable intimes of constraint on healthcare costs. Eur Radiol 23:607–613PubMedCrossRefGoogle Scholar
  31. 31.
    Bongartz G, Golding SJ, Jurik AG et al (2004) European guidelines for multislice computed tomography. European Commission, LuxembourgGoogle Scholar
  32. 32.
    Recommendations of the International Commission on Radiological Protection (2007) ICRP publication 103. Ann ICRP 37:1–332Google Scholar
  33. 33.
    American Association of Physicists in Medicine (2008) The measurement, reporting, and management of radiation dose in CT. Report no. 96. American Association of Physicists in Medicine, College ParkGoogle Scholar
  34. 34.
    Ippolito D, Fior D, Franzesi CT, Riva L, Casiraghi A, Sironi S (2017) Diagnostic accuracy of 256-row multidetector CT coronary angiography with prospective ECG-gating combined with fourth-generation iterative reconstruction algorithm in the assessment of coronary artery bypass: evaluation of dose reduction and image quality. Radiol Med 122(12):893–901PubMedCrossRefGoogle Scholar
  35. 35.
    Di Cesare E, Patriarca L, Panebianco L, Bruno F, Palumbo P, Cannizzaro E et al (2018) Coronary computed tomography angiography in the evaluation of intermediate risk asymptomatic individuals. Radiol Med 123(9):686–694PubMedCrossRefGoogle Scholar
  36. 36.
    Moore B, Bradya S (2014) Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys 41(7):071917PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Tomà P, Cannatà V, Genovese E, Magistrelli A, Granata C (2017) Radiation exposure in diagnostic imaging: wisdom and prudence, but still a lot to understand. Radiol Med 122(3):215–220PubMedCrossRefGoogle Scholar
  38. 38.
    Paolicchi F, Bastiani L, Guido D, Dore A, Aringhieri G, Caramella D (2018) Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability. Radiol Med 123(3):191–201PubMedCrossRefGoogle Scholar
  39. 39.
    Schicchi N, Fogante M, Oliva M, Esposto Pirani P, Agliata G, Giuseppetti GM, Giovagnoni A (2019) Radiation dose and image quality with new protocol in lower extremity computed tomography angiography. Radiol Med 124(3):184–190PubMedCrossRefGoogle Scholar
  40. 40.
    Agliata G, Schicchi N, Agostini A, Fogante M, Mari A, Maggi S, Giovagnoni A (2019) Radiation exposure related to cardiovascular CT examination: comparison between conventional 64-MDCT and third generation dual-source MDCT. Radiol Med 124(8):753–761PubMedCrossRefGoogle Scholar
  41. 41.
    Paro JN, Zavisić BK (2012) Iodine and thyroid gland with or without nuclear catastrophe. Med Pregl 65:489–495PubMedCrossRefGoogle Scholar
  42. 42.
    Foley SJ, McEntee MF, Achenbach S, Brennan PC, Rainford LS, Dodd JD (2011) Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding. AJR Am J Roentgenol 197(2):367–373PubMedCrossRefGoogle Scholar
  43. 43.
    Mueller JW et al (2014) In vivo CT dosimetry during CT colonography. AJR Am J Roentgenol 202(4):703–710PubMedCrossRefGoogle Scholar
  44. 44.
    Feng R, Mao J, Liu X, Zhao Y, Tong J, Zhang L (2018) High-pitch coronary computed tomographic angiography using the third-generation dual-source computed tomography: initial experience in patients with high heart rate. J Comput Assist Tomogr 42(2):248–255PubMedGoogle Scholar
  45. 45.
    Seppelt D, Kolb C, Kühn JP, Speiser U, Radosa CG, Hoberück S, Hoffmann RT, Platzek I (2019) Comparison of sequential and high-pitch-spiral coronary CT-angiography: image quality and radiation exposure. Int J Cardiovasc Imaging 35(7):1379–1386PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2019

Authors and Affiliations

  • Nicolò Schicchi
    • 1
  • Alberto Mari
    • 2
  • Marco Fogante
    • 1
    Email author
  • Paolo Esposto Pirani
    • 1
  • Giacomo Agliata
    • 1
  • Niccolò Tosi
    • 1
  • Pierpaolo Palumbo
    • 3
  • Ester Cannizzaro
    • 3
  • Federico Bruno
    • 3
  • Alessandra Splendiani
    • 3
  • Ernesto Di Cesare
    • 3
  • Stefania Maggi
    • 2
  • Andrea Giovagnoni
    • 1
  1. 1.Radiology DepartmentAzienda Ospedaliero Universitaria “Ospedali Riuniti”AnconaItaly
  2. 2.Health Physics DepartmentAzienda Ospedaliero Universitaria “Ospedali Riuniti”AnconaItaly
  3. 3.Life, Health and Environmental Sciences DepartmentUniversity of L’AquilaL’AquilaItaly

Personalised recommendations