Advertisement

Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art

  • Nicolò Schicchi
  • Marco FoganteEmail author
  • Paolo Esposto Pirani
  • Giacomo Agliata
  • Maria Chiara Basile
  • Matteo Oliva
  • Andrea Agostini
  • Andrea Giovagnoni
CARDIAC RADIOLOGY
  • 60 Downloads

Abstract

Cardiovascular computer tomography (CT) in pediatric congenital heart disease (CHD) patients is often challenging. This might be due to limited patient cooperation, the high heart rate, the complexity and variety of diseases and the need for radiation dose minimization. The recent developments in CT technology with the introduction of the third-generation dual-source (DS) dual-energy (DE) CT scanners well suited to respond to these challenges. DSCT is characterized by high-pitch, long anatomic coverage and a more flexible electrocardiogram-synchronized scan. DE provides additional clinical information about vascular structures, myocardial and lung perfusion and allows artifacts reduction. These advances have increased clinical indications and modified CT protocol for pediatric CHD patients. In our hospital, DSCT with DE technology has rapidly become an important imaging technique for both pre- and postoperative management of pediatric patients with CHDs. The aim of this article is to describe the state-of-the-art in DSCT protocol with DE technology in pediatric CHD patients, providing some case examples of our experience over an 18-month period.

Keywords

Dual-source CT Dual-energy CT Congenital heart disease Pediatric patients State-of-the-art 

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interests associated with this study.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Sun R, Liu M, Lu L, Zheng Y, Zhang P (2015) Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys 72(3):857–860CrossRefPubMedGoogle Scholar
  2. 2.
    Long CM, Long SS, Johnson PT, Mahesh M, Fishman EK, Zimmerman SL (2015) Utility of low-dose high-pitch scanning for pediatric cardiac computed tomographic imaging. J Thorac Imaging 30(4):W36–W40CrossRefPubMedGoogle Scholar
  3. 3.
    Booij R, Dijkshoorn ML, van Straten M (2016) Cardiovascular imaging in pediatric patients using dual source CT. J Cardiovasc Comput Tomogr 10:13–21CrossRefPubMedGoogle Scholar
  4. 4.
    Abbara S, Blanke P, Maroules CD (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449CrossRefPubMedGoogle Scholar
  5. 5.
    Johnson JN, Hornik CP, Li JS, Benjamin DK Jr, Yoshizumi TT, Reiman RE, Frush DP, Hill KD (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130:161–167CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18(4):555–569CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, Sahani DV (2016) Material separation using dual-energy CT: current and emerging applications. RadioGraphics 36(4):1087–1105CrossRefPubMedGoogle Scholar
  9. 9.
    Siegel MJ, Kaza RK, Bolus DN, Boll DT, Rofsky NM, De Cecco CN, Foley WD, Morgan DE, Schoepf UJ, Sahani DV, Shuman WP, Vrtiska TJ, Yeh BM, Berland LL (2016) White paper of the Society of Computed Body Tomography and Magnetic Resonance on dual-energy CT. Part 1: technology and terminology. J Comput Assist Tomogr 40(6):841–845CrossRefPubMedGoogle Scholar
  10. 10.
    Foley WD, Shuman WP, Siegel MJ, Sahani DV, Boll DT, Bolus DN, De Cecco CN, Kaza RK, Morgan DE, Schoepf UJ, Vrtiska TJ, Yeh BM, Berland LL (2016) White paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, part 2: radiation dose and iodine sensitivity. J Comput Assist Tomogr 40(6):846–850CrossRefPubMedGoogle Scholar
  11. 11.
    De Cecco CN, Schoepf UJ, Steinbach L, Boll DT, Foley WD, Kaza RK, Bolus DN, Morgan DE, Sahani DV, Shuman WP, Siegel MJ, Vrtiska TJ, Yeh BM, Berland LL (2017) White paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, part 3: vascular, cardiac, pulmonary, and musculoskeletal applications. J Comput Assist Tomogr 41(1):1–7CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao Y, Wu Y, Zuo Z, Cheng S (2017) CT angiography of the kidney using routine CT and the latest Gemstone Spectral Imaging combination of different noise indexes: image quality and radiation dose. Radiol Med 122(5):327–336CrossRefPubMedGoogle Scholar
  13. 13.
    Rassouli N, Etesami M, Dhanantwari A, Rajiah P (2017) Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 8(6):589–598CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Almeida IP, Schyns LE, Öllers MC, van Elmpt W, Parodi K, Landry G, Verhaegen F (2017) Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 44(1):171–179CrossRefPubMedGoogle Scholar
  15. 15.
    Euler A, Obmann MM, Szucs-Farkas Z, Mileto A, Zaehringer C, Falkowski AL, Winkel DJ, Marin D, Stieltjes B, Krauss B, Schindera ST (2018) Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT. Eur Radiol 28(8):3405–3412CrossRefPubMedGoogle Scholar
  16. 16.
    Martine RJ, Santangelo T, Colas L, Jean-Baptiste F, Duhamel A, Deschildre A, Remy J (2017) Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT. Pediatr Radiol 47(2):161–168CrossRefPubMedGoogle Scholar
  17. 17.
    Li M, Zhang GM, Zhao JS, Jiang ZW, Peng ZH, Jin ZT, Sun G (2014) Diagnostic performance of dual-source CT coronary angiography with and without heart rate control: systematic review and meta-analysis. Clin Radiol 69(2):163–171CrossRefPubMedGoogle Scholar
  18. 18.
    Han BK, Overman DM, Grant K (2013) Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates. J Cardiovasc Comput Tomogr 7:354–360CrossRefPubMedGoogle Scholar
  19. 19.
    Tucker EW, Jain SK, Mahesh M (2017) Balancing the risks of radiation and anesthesia in pediatric patients. J Am Coll Radiol 14(11):1459–1461CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kino A, Zucker EJ, Honkanen A, Kneebone J, Wang J, Chan F, Newman B (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing versus breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49(3):301–307CrossRefPubMedGoogle Scholar
  21. 21.
    Leipsic J, Abbara S, Achenbach S (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8:342–358CrossRefPubMedGoogle Scholar
  22. 22.
    Meyer M, Haubenreisser H, Schoepf UJ, Vliegenthart R, Leidecker C, Allmendinger T, Lehmann R, Sudarski S, Borggrefe M, Schoenberg SO, Henzler T (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273:373–382CrossRefPubMedGoogle Scholar
  23. 23.
    Fleischmann U, Pietsch H, Korporaal JG, Flohr TG, Uder M, Jost G, Lell MM (2018) Impact of contrast media concentration on low-kilovolt computed tomography angiography: a systematic preclinical approach. Invest Radiol 53(5):264–270CrossRefPubMedGoogle Scholar
  24. 24.
    Saake M, Lell MM, Rompel O, Gloeckler M, May M, Eller A, Achenbach S, Uder M, Wuest W (2014) Contrast medium application in pediatric high-pitch cardiovascular CT angiography: manual or power injection? J Cardiovasc Comput Tomogr 8(4):315–322CrossRefPubMedGoogle Scholar
  25. 25.
    Stenzel F, Rief M, Zimmermann E (2014) Contrast agent bolus tracking with a fixed threshold or a manual fast start for coronary CT angiography. Eur Radiol 24:1229–1238CrossRefPubMedGoogle Scholar
  26. 26.
    Sorantin E, Weissensteiner S, Hasenburger G, Riccabona M (2013) CT in children–dose protection and general considerations when planning a CT in a child. Eur J Radiol 82:1043–1049CrossRefPubMedGoogle Scholar
  27. 27.
    Sun K, Liu GR, Li YC, Han RJ, Cui LF, Ma LJ, Li LG, Li CY (2013) Intravenous contrast material administration at high-pitch dual-source CT coronary angiography: bolus-tracking technique with shortened time of respiratory instruction versus test bolus technique. Chin Med Sci J 27(4):225–231CrossRefPubMedGoogle Scholar
  28. 28.
    Gao Y, Lu B, Hou Z, Yu F, Cao H, Han L, Wu R (2012) Low dose dual-source CT angiography in infants with complex congenital heart disease: a randomized study. Eur J Radiol 81(7):e789–e795CrossRefPubMedGoogle Scholar
  29. 29.
    Xie L, Liu Z, Zhang X, Xu K, Xu Q, Lu L, Hu C, Han S, Li J (2018) Electrocardiography-gated dual-source computed tomography in the detection of atrial septal aneurysm. Exp Ther Med 16(5):4260–4264PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kanie Y, Sato S, Tada A, Kanazawa S (2017) Image quality of coronary arteries on non-electrocardiography-gated high-pitch dual-source computed tomography in children with congenital heart disease. Pediatr Cardiol 38(7):1393–1399CrossRefPubMedGoogle Scholar
  31. 31.
    Mueller-Lisse UG, Marwitz L, Tufman A, Huber RM, Zimmermann HA, Walterham A, Wirth S, Paolini M (2018) Less radiation, same quality: contrast-enhanced multi-detector computed tomography investigation of thoracic lymph nodes with one milli-sievert. Radiol Med 123(11):818–826CrossRefPubMedGoogle Scholar
  32. 32.
    Li T, Zhao S, Liu J, Yang L, Huang Z, Li J, Luo C, Li X (2017) Feasibility of high-pitch spiral dual-source CT angiography in children with complex congenital heart disease compared to retrospective-gated spiral acquisition. Clin Radiol 72(10):864–870CrossRefPubMedGoogle Scholar
  33. 33.
    La Grutta L, Marasà M, Toia P, Ajello D, Albano D, Maffei E, Grassedonio E, Novo G, Galia M, Caruso G, Novo S, Cademartiri F, Midiri M (2017) Integrated non-invasive approach to atherosclerosis with cardiac CT and carotid ultrasound in patients with suspected coronary artery disease. Radiol Med 122(1):16–21CrossRefPubMedGoogle Scholar
  34. 34.
    Ippolito D, Fior D, Franzesi CT, Riva A, Casiraghi A, Sironi S (2017) Diagnostic accuracy of 256-row multidetector CT coronary angiography with prospective ECG-gating combined with fourth-generation iterative reconstruction algorithm in the assessment of coronary artery bypass: evaluation of dose reduction and image quality. Radiol Med 122(12):893–901CrossRefPubMedGoogle Scholar
  35. 35.
    Koplay M, Kizilca O, Cimen D, Sivri M, Erdogan H, Guvenc O, Oc M, Oran B (2016) Prospective ECG-gated high-pitch dual-source cardiac CT angiography in the diagnosis of congenital cardiovascular abnormalities: radiation dose and diagnostic efficacy in a pediatric population. Diagn Interv Imaging 97(11):1141–1150CrossRefPubMedGoogle Scholar
  36. 36.
    Messerli M, Dewes P, Scholtz JE, Arendt C, Wildermuth S, Vogl TJ, Bauer RW (2016) Evaluation of an adaptive detector collimation for prospectively ECG-triggered coronary CT angiography with third-generation dual-source CT. Eur Radiol 28(5):2143–2150CrossRefGoogle Scholar
  37. 37.
    Cesare E, Patriarca L, Panebianco L, Bruno F, Palumbo P, Cannizzaro E, Splendiani A, Barile A, Masciocchi C (2018) Coronary computed tomography angiography in the evaluation of intermediate risk asymptomatic individuals. Radiol Med 123(9):686–694CrossRefPubMedGoogle Scholar
  38. 38.
    Alis J, Latson LA Jr, Haramati LB, Shmukler A (2018) Navigating the pulmonary perfusion map: dual-energy computed tomography in acute pulmonary embolism. J Comput Assist Tomogr 42(6):840–849CrossRefPubMedGoogle Scholar
  39. 39.
    Hwang HJ, Hoffman EA, Lee CH (2017) The role of dual-energy computed tomography in the assessment of pulmonary function. Eur J Radiol 86:320–334CrossRefPubMedGoogle Scholar
  40. 40.
    Rizzo S, Femia M, Radice D, Del Grande M, Franchi D, Origgi D, Buscarino V, Mauro A, Bellomi M (2018) Evaluation of deep myometrial invasion in endometrial cancer patients: is dual-energy CT an option? Radiol Med 123(1):13–19CrossRefPubMedGoogle Scholar
  41. 41.
    Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK (2016) Dual-energy CT: spectrum of thoracic abnormalities. RadioGraphics 36(1):38–52CrossRefPubMedGoogle Scholar
  42. 42.
    Hachulla AL, Lador F, Soccal PM, Montet X, Beghetti M (2016) Dual-energy computed tomographic imaging of pulmonary hypertension. Swiss Med Wkly 146:w14328PubMedGoogle Scholar
  43. 43.
    Magarelli N, De Santis V, Marziali G, Menghi A, Burrofato A, Pedone L, Del Prete D, Iezzi R, de Waure C, D’andrea M, Leone A, Colosimo C (2018) Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med 123(8):593–600CrossRefPubMedGoogle Scholar
  44. 44.
    Muto M, Giurazza F, Ambrosanio G, Vassallo P, Briganti F, Tecame M, Schena E, De Nicola M, Sgreccia A, Giannoni M, Peschillo S, Diana F, Guidetti G, Guarnieri G (2017) Stent-assisted coiling in ruptured cerebral aneurysms: multi-center experience in acute phase. Radiol Med 122(1):43–52CrossRefPubMedGoogle Scholar
  45. 45.
    Niola R, Giurazza F, Torbica A, Schena E, Silvestre M, Maglione F (2017) Predelivery uterine arteries embolization in patients with placental implant anomalies: a cost-effective procedure. Radiol Med 122(1):77–79CrossRefPubMedGoogle Scholar
  46. 46.
    Paolicchi F, Bastiani L, Guido D, Dore A, Aringhieri G, Caramella D (2018) Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability. Radiol Med 123(3):191–201CrossRefPubMedGoogle Scholar
  47. 47.
    Compagnone G, Padovani R, D’Avanzo MA, Grande S, Campanella F, Rosi A, Italian Working Group on Interventional Radiology (2018) Summary of the Italian inter-society recommendations for radiation protection optimization in interventional radiology. Radiol Med 123(5):378–384CrossRefPubMedGoogle Scholar
  48. 48.
    Marukawa Y, Sato S, Tanaka T, Tada A, Kanie Y, Kanazawa S (2017) Evaluating low-kV dual-source CT angiography by high-pitch spiral acquisition and iterative reconstruction in pediatric congenital heart disease patients. Acta Med Okayama 71(5):407–412PubMedGoogle Scholar
  49. 49.
    Sun J, Zhang Q, Duan X, Zhang C, Wang P, Jia C, Liu Y, Peng Y (2018) Application of a full model-based iterative reconstruction (MBIR) in 80 kVp ultra-low-dose paranasal sinus CT imaging of pediatric patients. Radiol Med 123(2):117–124CrossRefPubMedGoogle Scholar
  50. 50.
    Qin L, Ma Z, Yan F, Yang W (2018) Iterative model reconstruction (IMR) algorithm for reduced radiation dose renal artery CT angiography with different tube voltage protocols. Radiol Med 123(2):83–90CrossRefPubMedGoogle Scholar
  51. 51.
    Chen B, Zhao S, Gao Y, Cheng Z, Duan Y, Das P, Wang X (2019) Image quality and radiation dose of two prospective ECG-triggered protocols using 128-slice dual-source CT angiography in infants with congenital heart disease. Int J Cardiovasc Imaging 35(5):937–945CrossRefPubMedGoogle Scholar
  52. 52.
    Tomà P, Cannatà V, Genovese E, Magistrelli A, Granata C (2017) Radiation exposure in diagnostic imaging: wisdom and prudence, but still a lot to understand. Radiol Med 122(3):215–220CrossRefPubMedGoogle Scholar
  53. 53.
    Kim JS, Kwon SM, Kim JM, Yoon SW (2017) New organ-based tube current modulation method to reduce the radiation dose during computed tomography of the head: evaluation of image quality and radiation dose to the eyes in the phantom study. Radiol Med 122(8):601–608CrossRefPubMedGoogle Scholar
  54. 54.
    Ruffino MA, Fronda M, Discalzi A, Isoardi P, Bergamasco L, Ropolo R, Righi D, Fonio P (2018) Radiation dose during endovascular aneurysm repair (EVAR): upgrade of an angiographic system from standard to Eco mode. Radiol Med 123(12):966–972CrossRefPubMedGoogle Scholar
  55. 55.
    Nardi C, Salerno S, Molteni R, Occhipinti M, Grazzini G, Norberti N, Cordopatri C, Colagrande S (2018) Radiation dose in non-dental cone beam CT applications: a systematic review. Radiol Med 123(10):765–777CrossRefPubMedGoogle Scholar
  56. 56.
    Siegel MJ, Curtis WA, Ramirez-Giraldo JC (2016) Effects of dual-energy technique on radiation exposure and image quality in pediatric body CT. AJR Am J Roentgenol 207(4):826–835CrossRefPubMedGoogle Scholar
  57. 57.
    Weinman JP, Mirksy DV, Jensen AM, Stence NV (2019) Dual energy head CT to maintain image quality while reducing dose in pediatric patients. Clin Imaging 93:83–86CrossRefGoogle Scholar
  58. 58.
    Agliata G, Schicchi N, Agostini A, Fogante M, Mari A, Maggi S, Giovagnoni A (2019) Radiation exposure related to cardiovascular CT examination: comparison between conventional 64-MDCT and third-generation dual-source MDCT. Radiol Med 124(8):753–761CrossRefPubMedGoogle Scholar
  59. 59.
    Riccardi L, De Monte F, Cretti F, Pini S, Zucca S, Quattrocchi MG, Origgi D, Del Vecchio A, Giordano C, Marini P, Lisciandro F, Trevisiol E, Zefiro D, Cutaia C, D’Ercole L, Gabusi M, Scaggion A, Paiusco M (2018) Use of radiation dose index monitoring software in a multicenter environment for CT dose optimization. Radiol Med 123(12):944–951CrossRefPubMedGoogle Scholar
  60. 60.
    Cheasty E, Mahboobani S, Rubens M, Nicol E (2018) The use of cardiovascular CT for the follow up of paediatric hypoplastic left heart syndrome. J Cardiovasc Comput Tomogr.  https://doi.org/10.1016/j.jcct.2018.10.021
  61. 61.
    Goo HW (2017) Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome. Pediatr Radiol 47(13):1776–1786CrossRefPubMedGoogle Scholar
  62. 62.
    Hanneman K, Newman B, Chan F (2017) Congenital variants and anomalies of the aortic arch. Radiographics 37(1):32–51CrossRefPubMedGoogle Scholar
  63. 63.
    Goudar SP, Shah SS, Shirali GS (2016) Echocardiography of coarctation of the aorta, aortic arch hypoplasia, and arch interruption: strategies for evaluation of the aortic arch. Cardiol Young 26(8):1553–1562CrossRefPubMedGoogle Scholar
  64. 64.
    Yuan SM (2017) Ebstein’s anomaly: genetics, clinical manifestations, and management. Pediatr Neonatol 58(3):211–215CrossRefPubMedGoogle Scholar
  65. 65.
    Silva GVRD, Miana LA, Caneo LF, Turquetto ALR, Tanamati C, Penha JG, Jatene FB, Jatene MB (2019) Early and long-term outcomes of surgical treatment of Ebstein’s anomaly. Braz J Cardiovasc Surg.  https://doi.org/10.21470/1678-9741-2018-0333
  66. 66.
    Goo HW (2018) Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings. Int J Cardiovasc Imaging 34(12):1997–2009CrossRefPubMedGoogle Scholar
  67. 67.
    Barbiero G, Groff S, Battistel M, Casarin A, Guarise A, Miotto D (2018) Are iatrogenic renal artery pseudoaneurysms more challenging to embolize when associated with an arteriovenous fistula? Radiol Med 123(10):742–752CrossRefPubMedGoogle Scholar
  68. 68.
    Lapierre C, Dubois J, Rypens F, Raboisson MJ, Déry J (2016) Tetralogy of Fallot: preoperative assessment with MR and CT imaging. Diagn Interv Imaging 97(5):531–541CrossRefPubMedGoogle Scholar
  69. 69.
    Leone MB, Giannotta M, Palazzini M, Cefarelli M, Martìn Suàrez S, Gotti E, Bacchi Reggiani ML, Zompatori M, Galiè N (2017) A new CT-score as index of hemodynamic changes in patients with chronic thromboembolic pulmonary hypertension. Radiol Med 122(7):495–504CrossRefPubMedGoogle Scholar
  70. 70.
    Odawara Y, Kawamura N, Yamasaki Y, Hashimoto J, Ishikawa S, Honda H (2019) Evaluation of coronary artery variations using dual-source coronary computed tomography angiography in neonates with transposition of the great arteries. Jpn J Radiol 37(4):308–314CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2019

Authors and Affiliations

  1. 1.Radiology DepartmentAzienda Ospedaliero Universitaria “Ospedali Riuniti”AnconaItaly

Personalised recommendations