La radiologia medica

, Volume 124, Issue 11, pp 1128–1141 | Cite as

Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography

  • Mikkel ØstergaardEmail author
  • Mikael Boesen


In suspected and diagnosed rheumatoid arthritis (RA), magnetic resonance imaging (MRI) allows detection of all relevant pathologies, such as synovitis, tenosynovitis, bone marrow edema (osteitis), bone erosion and cartilage damage. MRI is more sensitive than clinical examination for monitoring disease activity (i.e., inflammation) and more sensitive than conventional radiography and ultrasonography for monitoring joint destruction. In suspected RA, MRI bone marrow edema predicts development of RA, and in early RA patients, it predicts subsequent structural damage progression. CT is the standard reference imaging modality for visualizing bone damage, including bone erosions in RA, but lacks sensitivity for soft-tissue changes, including synovitis and tenosynovitis. CT has a minimal role in RA clinical trials and practice, except in selected patients where MRI is contraindicated or not available or if crystal arthritis such as gout or pseudo-gout is suspected. MRI has documented utility in diagnosis, monitoring and prognostication of patients with RA and is increasingly used for these purposes in clinical practice and particularly clinical trials.


Magnetic resonance imaging Computed tomography Rheumatoid arthritis Synovitis Bone erosion Tenosynovitis Bone marrow edema Diagnosis Monitoring Prognostication 


Compliance with ethical standards

Conflict of interest

MØ has received speaker/consultant fees from Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche and UCB, and research grants from Abbvie, Celgene, Centocor, Merck, and Novartis. MB is a shareholder of Image Analysis Group and serves as a consultant to Image Analysis Group, Eli Lilly, Esaote, Celgene, Pfizer, Abbvie, Carestream/Canon, Siemens and AstraZeneca.

Ethical standards

The manuscript does not contain clinical studies or patient data. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Combe B, Landewe R, Daien CI, Hua C, Aletaha D, Alvaro-Gracia JM et al (2017) 2016 Update of the EULAR recommendations for the management of early arthritis. Ann Rheum Dis 76(6):948–959Google Scholar
  2. 2.
    Colebatch AN, Edwards CJ, Østergaard M, van der Heijde D, Balint PV, d’Agostino MA et al (2013) EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis 72(6):804–814Google Scholar
  3. 3.
    Østergaard M, Pedersen SJ, Døhn UM (2008) Imaging in rheumatoid arthritis–status and recent advances for magnetic resonance imaging, ultrasonography, computed tomography and conventional radiography. Best Pract Res Clin Rheumatol 22(6):1019–1044Google Scholar
  4. 4.
    Østergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I et al (2017) The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol 44(11):1706–1712PubMedGoogle Scholar
  5. 5.
    Sudol-Szopinska I, Jurik AG, Eshed I, Lennart J, Grainger A, Østergaard M et al (2015) Recommendations of the ESSR arthritis subcommittee for the use of magnetic resonance imaging in musculoskeletal rheumatic diseases. Semin Musculoskelet Radiol 19(4):396–411PubMedGoogle Scholar
  6. 6.
    Glinatsi D, Bird P, Gandjbakhch F, Mease PJ, Boyesen P, Peterfy CG et al (2015) Validation of the OMERACT psoriatic arthritis magnetic resonance imaging score (PsAMRIS) for the hand and foot in a randomized placebo-controlled trial. J Rheumatol 42(12):2473–2479PubMedGoogle Scholar
  7. 7.
    Østergaard M, Conaghan PG, O’Connor P, Szkudlarek M, Klarlund M, Emery P et al (2009) Reducing invasiveness, duration, and cost of magnetic resonance imaging in rheumatoid arthritis by omitting intravenous contrast injection—does it change the assessment of inflammatory and destructive joint changes by the OMERACT RAMRIS? J Rheumatol 36(8):1806–1810PubMedGoogle Scholar
  8. 8.
    Del Grande F, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE et al (2014) Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 34(1):217–233PubMedPubMedCentralGoogle Scholar
  9. 9.
    Axelsen MB, Eshed I, Duer-Jensen A, Moller JM, Pedersen SJ, Østergaard M (2014) Whole-body MRI assessment of disease activity and structural damage in rheumatoid arthritis: first step towards an MRI joint count. Rheumatology (Oxford) 53(5):845–853Google Scholar
  10. 10.
    Weckbach S, Schewe S, Michaely HJ, Steffinger D, Reiser MF, Glaser C (2011) Whole-body MR imaging in psoriatic arthritis: additional value for therapeutic decision making. Eur J Radiol 77(1):149–155PubMedGoogle Scholar
  11. 11.
    Krabbe S, Østergaard M, Eshed I, Sorensen IJ, Jensen B, Moller JM et al (2018) Whole-body magnetic resonance imaging in axial spondyloarthritis: reduction of sacroiliac, spinal, and entheseal inflammation in a placebo-controlled trial of adalimumab. J Rheumatol 45:621–629PubMedGoogle Scholar
  12. 12.
    Østergaard M, Eshed I, Althoff CE, Poggenborg RP, Diekhoff T, Krabbe S et al (2017) Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol 44(11):1699–1705PubMedGoogle Scholar
  13. 13.
    Axelsen MB, Stoltenberg M, Poggenborg RP, Kubassova O, Boesen M, Bliddal H et al (2012) Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scand J Rheumatol 41(2):89–94PubMedGoogle Scholar
  14. 14.
    Humby F, Mahto A, Ahmed M, Barr A, Kelly S, Buch M et al (2017) The relationship between synovial pathobiology and magnetic resonance imaging abnormalities in rheumatoid arthritis: a systematic review. J Rheumatol 44(9):1311–1324PubMedGoogle Scholar
  15. 15.
    Boesen M, Kubassova O, Bouert R, Axelsen MB, Østergaard M, Cimmino MA et al (2012) Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis—a cohort study. Rheumatology (Oxford) 51(1):134–143Google Scholar
  16. 16.
    Waterton JC, Ho M, Nordenmark LH, Jenkins M, Dicarlo J, Guillard G et al (2017) Repeatability and response to therapy of dynamic contrast-enhanced magnetic resonance imaging biomarkers in rheumatoid arthritis in a large multicentre trial setting. Eur Radiol 27(9):3662–3668PubMedPubMedCentralGoogle Scholar
  17. 17.
    Østergaard M, Hansen M, Stoltenberg M, Lorenzen I (1996) Quantitative assessment of the synovial membrane in the rheumatoid wrist: an easily obtained MRI score reflects the synovial volume. Br J Rheumatol 35(10):965–971PubMedGoogle Scholar
  18. 18.
    Østergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Jensen CH, Lorenzen I (1997) Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum 40(10):1856–1867PubMedGoogle Scholar
  19. 19.
    Conaghan PG, Østergaard M, Bowes MA, Wu C, Fuerst T, van der Heijde D et al (2016) Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann Rheum Dis 75(6):1024–1033PubMedPubMedCentralGoogle Scholar
  20. 20.
    ESUR Contrast Media Safety Committee (2014) ESUR guidelines on nephrogenic sustemic fibrosis. ESUR guidelines on contrast media. 9.0 ed. Vienna, ESUR Office, 16-8Google Scholar
  21. 21.
    Østergaard M, Peterfy C, Conaghan P, McQueen F, Bird P, Ejbjerg B et al (2003) OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 30(6):1385–1386Google Scholar
  22. 22.
    Ostendorf B, Peters R, Dann P, Becker A, Scherer A, Wedekind F et al (2001) Magnetic resonance imaging and miniarthroscopy of metacarpophalangeal joints: sensitive detection of morphologic changes in rheumatoid arthritis. Arthritis Rheum 44(11):2492–2502PubMedGoogle Scholar
  23. 23.
    Partik B, Rand T, Pretterklieber ML, Voracek M, Hoermann M, Helbich TH (2002) Patterns of gadopentetate-enhanced MR imaging of radiocarpal joints of healthy subjects. AJR Am J Roentgenol 179(1):193–197PubMedGoogle Scholar
  24. 24.
    Tan AL, Tanner SF, Conaghan PG, Radjenovic A, O’Connor P, Brown AK et al (2003) Role of metacarpophalangeal joint anatomic factors in the distribution of synovitis and bone erosion in early rheumatoid arthritis. Arthritis Rheum 48(5):1214–1222PubMedGoogle Scholar
  25. 25.
    Ejbjerg B, Narvestad E, Rostrup E, Szkudlarek M, Jacobsen S, Thomsen HS et al (2004) Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum 50(4):1097–1106PubMedGoogle Scholar
  26. 26.
    Mangnus L, Schoones JW, van der Helm-van Mil AH (2015) What is the prevalence of MRI-detected inflammation and erosions in small joints in the general population? A collation and analysis of published data. RMD Open 1(1):e000005PubMedPubMedCentralGoogle Scholar
  27. 27.
    Burgers LE, Nieuwenhuis WP, van Steenbergen HW, Newsum EC, Huizinga TW, Reijnierse M et al (2016) Magnetic resonance imaging-detected inflammation is associated with functional disability in early arthritis—results of a cross-sectional study. Rheumatology (Oxford) 55:2167–2175Google Scholar
  28. 28.
    Rubens DJ, Blebea JS, Totterman SMS, Hooper MM (1993) Rheumatoid arthritis: evaluation of wrist extensor tendons with clinical examination versus MR imaging—a preliminary report. Radiology 187:831–838PubMedGoogle Scholar
  29. 29.
    Klarlund M, Østergaard M, Jensen KE, Madsen JL, Skjødt H, The TIRA Group (2000) Magnetic resonance imaging, radiography, and scintigraphy of the finger joints: one year follow up of patients with early arthritis. Ann Rheum Dis 59(7):521–528PubMedPubMedCentralGoogle Scholar
  30. 30.
    McQueen FM, Gao A, Østergaard M, King A, Shalley G, Robinson E et al (2007) High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone. Ann Rheum Dis 66(12):1581–1587PubMedPubMedCentralGoogle Scholar
  31. 31.
    Jimenez-Boj E, Nobauer-Huhmann I, Hanslik-Schnabel B, Dorotka R, Wanivenhaus AH, Kainberger F et al (2007) Bone erosions and bone marrow edema as defined by magnetic resonance imaging reflect true bone marrow inflammation in rheumatoid arthritis. Arthritis Rheum 56(4):1118–1124PubMedGoogle Scholar
  32. 32.
    McQueen FM, Stewart N, Crabbe J, Robinson E, Yeoman S, Tan PLJ et al (1999) Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals progression of erosions despite clinical improvement. Ann Rheum Dis 58:156–163PubMedPubMedCentralGoogle Scholar
  33. 33.
    Conaghan PG, O’Connor P, McGonagle D, Astin P, Wakefield RJ, Gibbon WW et al (2003) Elucidation of the relationship between synovitis and bone damage: a randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis. Arthritis Rheum 48(1):64–71PubMedGoogle Scholar
  34. 34.
    Hetland ML, Ejbjerg B, Horslev-Petersen K, Jacobsen S, Vestergaard A, Jurik AG et al (2009) MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis 68(3):384–390PubMedGoogle Scholar
  35. 35.
    McGonagle D, Gibbon W, Emery P (1998) Classification of inflammatory arthritis by enthesitis. Lancet 352:1137–1140PubMedGoogle Scholar
  36. 36.
    Peterfy CG, van Dijke CF, Lu Y, Nguyen A, Connick TJ, Kneeland JB et al (1995) Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging. Am J Roentgenol 165:371–375Google Scholar
  37. 37.
    Peterfy CG, Olech E, DiCarlo JC, Merrill JT, Countryman PJ, Gaylis NB (2013) Monitoring cartilage loss in the hands and wrists in rheumatoid arthritis with magnetic resonance imaging in a multi-center clinical trial: IMPRESS (NCT00425932). Arthritis Res Ther 15(2):R44PubMedPubMedCentralGoogle Scholar
  38. 38.
    Peterfy C, Emery P, Tak PP, Østergaard M, Dicarlo J, Otsa K et al (2016) MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomised, placebo-controlled, double-blind RA-SCORE study. Ann Rheum Dis 75(1):170–177PubMedGoogle Scholar
  39. 39.
    Døhn UM, Conaghan PG, Eshed I, Boonen A, Bøyesen P, Peterfy CG et al (2014) The OMERACT-RAMRIS rheumatoid arthritis magnetic resonance imaging joint space narrowing score: intrareader and interreader reliability and agreement with computed tomography and conventional radiography. J Rheumatol 41(2):392–397PubMedGoogle Scholar
  40. 40.
    McQueen FM, Stewart N, Crabbe J, Robinson E, Yeoman S, Tan PLJ et al (1998) Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosion at four months after symptom onset. Ann Rheum Dis 57:350–356PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lindegaard H, Vallø J, Hørslev-Petersen K, Junker P, Østergaard M (2001) Low field dedicated magnetic resonance imaging in untreated rheumatoid arthritis of recent onset. Ann Rheum Dis 60(8):770–776PubMedPubMedCentralGoogle Scholar
  42. 42.
    Østergaard M, Hansen M, Stoltenberg M, Jensen KE, Szkudlarek M, Pedersen-Zbinden B et al (2003) New radiographic bone erosions in the wrists of patients with rheumatoid arthritis are detectable with magnetic resonance imaging a median of two years earlier. Arthritis Rheum 48(8):2128–2131PubMedGoogle Scholar
  43. 43.
    Døhn UM, Ejbjerg BJ, Court-Payen Hasselquist M, Narvestad E, Szkudlarek M et al (2006) Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther 8(4):R110PubMedPubMedCentralGoogle Scholar
  44. 44.
    Døhn UM, Ejbjerg BJ, Hasselquist M, Narvestad E, Møller J, Thomsen HS et al (2008) Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance imaging, computed tomography and radiography. Arthritis Res Ther 10(1):R25PubMedPubMedCentralGoogle Scholar
  45. 45.
    Østergaard M, Gideon P, Sørensen K, Hansen M, Stoltenberg M, Henriksen O et al (1995) Scoring of synovial membrane hypertrophy and bone erosions by MR imaging in clinically active and inactive rheumatoid arthritis of the wrist. Scand J Rheumatol 24(4):212–218PubMedGoogle Scholar
  46. 46.
    Conaghan P, Edmonds J, Emery P, Genant H, Gibbon W, Klarlund M et al (2001) Magnetic resonance imaging in rheumatoid arthritis: summary of OMERACT activities, current status, and plans. J Rheumatol 28(5):1158–1162PubMedGoogle Scholar
  47. 47.
    Østergaard M, Haavardsholm EA (2016) Imaging: MRI in healthy volunteers—important to do, and do correctly. Nat Rev Rheumatol 12:563PubMedGoogle Scholar
  48. 48.
    Stiskal MA, Neuhold A, Szolar DH, Saeed M, Czerny C, Leeb B et al (1995) Rheumatoid arthritis of the craniocervical region by MR imaging: detection and characterization. Am J Roentgenol 165:585–592Google Scholar
  49. 49.
    Oostveen JC, Roozeboom AR, van de Laar MA, Heeres J, den Boer JA, Lindeboom SF (1998) Functional turbo spin echo magnetic resonance imaging versus tomography for evaluating cervical spine involvement in rheumatoid arthritis. Spine 23(11):1237–1244PubMedGoogle Scholar
  50. 50.
    Reijnierse M, Dijkmans BA, Hansen B, Pope TL, Kroon HM, Holscher HC et al (2001) Neurologic dysfunction in patients with rheumatoid arthritis of the cervical spine. Predictive value of clinical, radiographic and MR imaging parameters. Eur Radiol 11(3):467–473PubMedGoogle Scholar
  51. 51.
    Hamilton JD, Johnston RA, Madhok R, Capell HA (2001) Factors predictive of subsequent deterioration in rheumatoid cervical myelopathy. Rheumatology (Oxford) 40(7):811–815Google Scholar
  52. 52.
    Tamai M, Kawakami A, Uetani M, Takao S, Arima K, Iwamoto N et al (2009) A prediction rule for disease outcome in patients with undifferentiated arthritis using magnetic resonance imaging of the wrists and finger joints and serologic autoantibodies. Arthritis Care Res 61(6):772–778Google Scholar
  53. 53.
    Duer-Jensen A, Horslev-Petersen K, Hetland ML, Bak L, Ejbjerg BJ, Hansen MS et al (2011) Bone edema on magnetic resonance imaging is an independent predictor of rheumatoid arthritis development in patients with early undifferentiated arthritis. Arthritis Rheum 63(8):2192–2202PubMedGoogle Scholar
  54. 54.
    Nieuwenhuis WP, van Steenbergen HW, Mangnus L, Newsum EC, Bloem JL, Huizinga TWJ et al (2017) Evaluation of the diagnostic accuracy of hand and foot MRI for early rheumatoid arthritis. Rheumatology (Oxford) 56(8):1367–1377Google Scholar
  55. 55.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69(9):1580–1588Google Scholar
  56. 56.
    Østergaard M (2010) Clarification of the role of ultrasonography, magnetic resonance imaging and conventional radiography in the ACR/EULAR 2010 rheumatoid arthritis classification criteria—comment to the article by Aletaha et al. Ann Rheum Dis e-letter. Published online December 2, 2010Google Scholar
  57. 57.
    Aletaha D, Hawker G, Neogi T, Silman A (2011) Re: clarification of the role of ultrasonography, magnetic resonance imaging and conventional radiography in the ACR/EULAR 2010 rheumatoid arthritis classification criteria—reply to comment to the article by Aletaha et al. Ann Rheum Dis e-letter. Published online January 11, 2011Google Scholar
  58. 58.
    Haavardsholm EA, Østergaard M, Ejbjerg BJ, Kvan NP, Uhlig TA, Lilleas FG et al (2005) Reliability and sensitivity to change of the OMERACT rheumatoid arthritis magnetic resonance imaging score in a multireader, longitudinal setting. Arthritis Rheum 52(12):3860–3867PubMedGoogle Scholar
  59. 59.
    Østergaard M, Edmonds J, McQueen F, Peterfy C, Lassere M, Ejbjerg B et al (2005) The EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis 64(Suppl 1):i2–i55PubMedCentralGoogle Scholar
  60. 60.
    Haavardsholm EA, Østergaard M, Hammer HB, Boyesen P, Boonen A, van der Heijde D et al (2009) Monitoring anti-TNFalpha treatment in rheumatoid arthritis: responsiveness of magnetic resonance imaging and ultrasonography of the dominant wrist joint compared with conventional measures of disease activity and structural damage. Ann Rheum Dis 68(10):1572–1579PubMedGoogle Scholar
  61. 61.
    Østergaard M, Emery P, Conaghan PG, Fleischmann R, Hsia EC, Xu W et al (2011) Significant improvement in synovitis, osteitis, and bone erosion following golimumab and methotrexate combination therapy as compared with methotrexate alone: a magnetic resonance imaging study of 318 methotrexate-naive rheumatoid arthritis patients. Arthritis Rheum 63(12):3712–3722PubMedGoogle Scholar
  62. 62.
    Baker JF, Conaghan PG, Emery P, Baker DG, Østergaard M (2016) Validity of early MRI structural damage end points and potential impact on clinical trial design in rheumatoid arthritis. Ann Rheum Dis 75(6):1114–1119PubMedGoogle Scholar
  63. 63.
    Peterfy C, Strand V, Tian L, Østergaard M, Lu Y, Dicarlo J et al (2017) Short-term changes on MRI predict long-term changes on radiography in rheumatoid arthritis: an analysis by an OMERACT Task Force of pooled data from four randomised controlled trials. Ann Rheum Dis 76(6):992–997PubMedGoogle Scholar
  64. 64.
    Døhn UM, Ejbjerg BJ, Hasselquist M, Narvestad E, Court-Payen Szkudlarek M et al (2007) Rheumatoid arthritis bone erosion volumes on CT and MRI: reliability and correlations with erosion scores on CT, MRI and radiography. Ann Rheum Dis 66(10):1388–1392PubMedPubMedCentralGoogle Scholar
  65. 65.
    American College of Rheumatology Rheumatoid Arthritis Clinical Trials Task Force Imaging Group and Outcome Measures in Rheumatology Magnetic Resonance Imaging Inflammatory Arthritis Working Group (2013) Review: the utility of magnetic resonance imaging for assessing structural damage in randomized controlled trials in rheumatoid arthritis. Arthritis Rheum 65(10):2513–2523Google Scholar
  66. 66.
    Boers M, Brooks P, Strand CV, Tugwell P (1998) The OMERACT filter for outcome measures in rheumatology. J Rheumatol 25(2):198–199PubMedGoogle Scholar
  67. 67.
    Døhn UM, Ejbjerg B, Boonen A, Hetland ML, Hansen MS, Knudsen LS et al (2011) No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT and radiography study. Ann Rheum Dis 70(2):252–258PubMedGoogle Scholar
  68. 68.
    Ejbjerg BJ, Vestergaard A, Jacobsen S, Thomsen HS, Østergaard M (2005) The smallest detectable difference and sensitivity to change of magnetic resonance imaging and radiographic scoring of structural joint damage in rheumatoid arthritis finger, wrist, and toe joints: a comparison of the OMERACT rheumatoid arthritis magnetic resonance imaging score applied to different joint combinations and the Sharp/van der Heijde radiographic score. Arthritis Rheum 52(8):2300–2306PubMedGoogle Scholar
  69. 69.
    Haavardsholm EA, Bøyesen P, Østergaard M, Schildvold A, Kvien TK (2008) Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann Rheum Dis 67(6):794–800PubMedGoogle Scholar
  70. 70.
    Nieuwenhuis WP, van Steenbergen HW, Stomp W, Stijnen T, Huizinga TW, Bloem JL et al (2016) The course of bone marrow edema in early undifferentiated arthritis and rheumatoid arthritis: a longitudinal magnetic resonance imaging study at bone level. Arthritis Rheumatol 68(5):1080–1088PubMedGoogle Scholar
  71. 71.
    Bøyesen P, Haavardsholm EA, Østergaard M, van der Heijde D, Sesseng S, Kvien TK (2011) MRI in early rheumatoid arthritis: synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression. Ann Rheum Dis 70(3):428–433PubMedGoogle Scholar
  72. 72.
    Hetland ML, Stengaard-Pedersen K, Junker P, Østergaard M, Ejbjerg BJ, Jacobsen S et al (2010) Radiographic progression and remission rates in early rheumatoid arthritis—MRI bone oedema and anti-CCP predicted radiographic progression in the 5-year extension of the double-blind randomised CIMESTRA trial. Ann Rheum Dis 69(10):1789–1795PubMedGoogle Scholar
  73. 73.
    Baker JF, Østergaard M, Emery P, Hsia EC, Lu J, Baker DG et al (2014) Early MRI measures independently predict 1-year and 2-year radiographic progression in rheumatoid arthritis: secondary analysis from a large clinical trial. Ann Rheum Dis 73(11):1968–1974PubMedGoogle Scholar
  74. 74.
    Hetland ML, Østergaard M, Stengaard-Pedersen K, Junker P, Ejbjerg B, Jacobsen S et al (2018) Anti-cyclic citrullinated peptide antibodies, 28-joint disease activity score, and magnetic resonance imaging bone oedema at baseline predict 11 years’ functional and radiographic outcome in early rheumatoid arthritis. Scand J Rheumatol 48:1–8PubMedGoogle Scholar
  75. 75.
    Brown AK, Quinn MA, Karim Z, Conaghan PG, Peterfy CG, Hensor E et al (2006) Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum 54(12):3761–3773Google Scholar
  76. 76.
    Gandjbakhch F, Conaghan PG, Ejbjerg B, Haavardsholm EA, Foltz V, Brown AK et al (2011) Synovitis and osteitis are very frequent in rheumatoid arthritis clinical remission: results from an MRI study of 294 patients in clinical remission or low disease activity state. J Rheumatol 38(9):2039–2044PubMedGoogle Scholar
  77. 77.
    Brown AK, Conaghan PG, Karim Z, Quinn MA, Ikeda K, Peterfy CG et al (2008) An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum 58:2958–2967PubMedGoogle Scholar
  78. 78.
    Gandjbakhch F, Foltz V, Mallet A, Bourgeois P, Fautrel B (2011) Bone marrow oedema predicts structural progression in a 1-year follow-up of 85 patients with RA in remission or with low disease activity with low-field MRI. Ann Rheum Dis 70(12):2159–2162PubMedGoogle Scholar
  79. 79.
    Gandjbakhch F, Haavardsholm EA, Conaghan PG, Ejbjerg B, Foltz V, Brown AK et al (2014) Determining a magnetic resonance imaging inflammatory activity acceptable state without subsequent radiographic progression in rheumatoid arthritis: results from a followup MRI study of 254 patients in clinical remission or low disease activity. J Rheumatol 41(2):398–406PubMedGoogle Scholar
  80. 80.
    Brahe CH, Krabbe S, Østergaard M, Ørnbjerg LM, Glinatsi D, Røgind H et al (2019) Dose tapering and discontinuation of biological therapy in rheumatoid arthritis patients in routine care—2-year outcomes and predictors. Rheumatology (Oxford) 58(1):110–119Google Scholar
  81. 81.
    Vardhanabhuti V, Riordan RD, Mitchell GR, Hyde C, Roobottom CA (2014) Image comparative assessment using iterative reconstructions: clinical comparison of low-dose abdominal/pelvic computed tomography between adaptive statistical, model-based iterative reconstructions and traditional filtered back projection in 65 patients. Invest Radiol 49(4):209–216PubMedGoogle Scholar
  82. 82.
    Chahal BS, Kwan ALC, Dhillon SS, Olubaniyi BO, Jhiangri GS, Neilson MM et al (2018) Radiation exposure to the sacroiliac joint from low-dose CT compared with radiography. AJR Am J Roentgenol 211(5):1058–1062PubMedGoogle Scholar
  83. 83.
    de Koning A, de Bruin F, van den Berg R, Ramiro S, Baraliakos X, Braun J et al (2018) Low-dose CT detects more progression of bone formation in comparison to conventional radiography in patients with ankylosing spondylitis: results from the SIAS cohort. Ann Rheum Dis 77(2):293–299PubMedGoogle Scholar
  84. 84.
    Aurell Y, Andersson M, Forslind K (2018) Cone-beam computed tomography, a new low-dose three-dimensional imaging technique for assessment of bone erosions in rheumatoid arthritis: reliability assessment and comparison with conventional radiography—a BARFOT study. Scand J Rheumatol 47(3):173–177PubMedGoogle Scholar
  85. 85.
    Jans L, De Kock I, Herregods N, Verstraete K, van den Bosch F, Carron P et al (2018) Dual-energy CT: a new imaging modality for bone marrow oedema in rheumatoid arthritis. Ann Rheum Dis 77(6):958–960PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wu H, Zhang G, Shi L, Li X, Chen M, Huang X et al (2019) Axial spondyloarthritis: dual-energy virtual noncalcium CT in the detection of bone marrow edema in the sacroiliac joints. Radiology 290(1):157–164PubMedPubMedCentralGoogle Scholar
  87. 87.
    Døhn UM, Boonen A, Hetland ML, Hansen MS, Knudsen LS, Hansen A et al (2009) Erosive progression is minimal, but erosion healing rare, in patients with rheumatoid arthritis treated with adalimumab. A 1 year investigator-initiated follow-up study using high-resolution computed tomography as the primary outcome measure. Ann Rheum Dis 68(10):1585–1590Google Scholar
  88. 88.
    Yue J, Griffith JF, Xiao F, Shi L, Wang D, Shen J et al (2017) Repair of bone erosion in rheumatoid arthritis by denosumab: a high-resolution peripheral quantitative computed tomography study. Arthritis Care Res (Hoboken) 69(8):1156–1163Google Scholar
  89. 89.
    Barnabe C, Toepfer D, Marotte H, Hauge EM, Scharmga A, Kocijan R et al (2016) Definition for rheumatoid arthritis erosions imaged with high resolution peripheral quantitative computed tomography and interreader reliability for detection and measurement. J Rheumatol 43(10):1935–1940PubMedGoogle Scholar
  90. 90.
    Scharmga A, Peters M, van den Bergh JP, Geusens P, Loeffen D, van Rietbergen B et al (2018) Development of a scoring method to visually score cortical interruptions on high-resolution peripheral quantitative computed tomography in rheumatoid arthritis and healthy controls. PLoS ONE 13(7):e0200331PubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2019

Authors and Affiliations

  1. 1.Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine DiseasesGlostrupDenmark
  2. 2.Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Radiology, Bispebjerg and Frederiksberg HospitalUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations