Role of pretreatment 18F-FDG PET/CT parameters in predicting outcome of non-endemic EBV DNA-related nasopharyngeal cancer (NPC) patients treated with IMRT and chemotherapy

  • Alessandra AlessiEmail author
  • Alice Lorenzoni
  • Anna Cavallo
  • Barbara Padovano
  • Nicola Alessandro Iacovelli
  • Paolo Bossi
  • Salvatore Alfieri
  • Gianluca Serafini
  • Carlotta Benedetta Colombo
  • Alessandro Cicchetti
  • Marta Mira
  • Lisa Licitra
  • Carlo Fallai
  • Flavio Crippa
  • Ester Orlandi



To evaluate the prognostic role of pretreatment 18F-FDG PET/CT metabolic parameters in non-endemic Epstein–Barr Virus (EBV DNA)-related nasopharyngeal cancer (NPC) patients treated with curative intensity-modulated radiation therapy (IMRT) with or without chemotherapy (CHT).


We retrospectively reviewed clinical data of 160 consecutive non-metastatic NPC patients who received IMRT with or without CHT. Forty-nine out of 160 patients that underwent whole body 18F-FDG PET/CT at our institution for disease staging with a minimum follow-up to 12 months were included in this study. We evaluated the relationship between maximum and mean standardized uptake values (SUVmax and SUVmean, respectively), metabolic tumor volume and total lesion glycolysis (TLG) of primary tumor and cervical lymph nodes with disease-free survival (DFS) and overall survival (OS). We also investigated the prognostic role of clinical variables such as age, disease stage, plasma EBV DNA load (copies/ml), gross tumor volume of primary tumor and lymph nodes.


Median follow-up was 55 months. Two- and 5-year OS were 95.8% and 90.5%, respectively, while DFS was 83.4% at both time points. SUVmax of primary tumor ≥ 18.8 g/ml and primary tumor TLG ≥ 203.1 g were significant prognostic factors of worse OS. Furthermore, stages IVB and EBV DNA load ≥ 3493 copies/ml were significantly associated with lower DFS. No correlation was found between PET parameters and plasma EBV DNA load.


Even in a limited series, our data suggested that SUVmax, SUVmean and TLG of primary tumor could predict a poor outcome in NPC patients also in non-endemic area hypothesizing their use for refinement of prognostication.


FDG PET/CT Metabolic parameters NPC EBV DNA IMRT 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study have been approved by the institutional committee, and all procedure performed were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Supplementary material

11547_2018_980_MOESM1_ESM.docx (634 kb)
Supplementary material 1 (DOCX 634 kb)


  1. 1.
    Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev 15(10):1765–1777CrossRefGoogle Scholar
  2. 2.
    Mao YP, Li WF, Chen L, Sun Y, Liu LZ, Tang LL, Cao SM, Lin AH, Hong MH, Lu TX, Liu MZ, Li L, Ma J (2009) A clinical verification of the Chinese 2008 staging system for nasopharyngeal carcinoma. Ai Zheng 28(10):1022–1028PubMedGoogle Scholar
  3. 3.
    Pan JJ, Ng WT, Zong JF, Lee SW, Choi HC, Chan LL, Lin SJ, Guo QJ, Sze HC, Chen YB, Xiao YP, Kan WK, O’Sullivan B, Xu W, Le QT, Glastonbury CM, Colevas AD, Weber RS, Lydiatt W, Shah JP, Lee AW (2016) Prognostic nomogram for refining the prognostication of the proposed 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer 122(21):3307–3315PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Huang TL, Hsu HC, Chen HC, Lin HC, Chien CY, Fang FM, Huang CC, Chang HW, Chang WN, Huang CR, Tsai NW, Kung CT, Wang HC, Lin WC, Cheng BC, Su YJ, Chang YT, Chang CR, Tan TY, Lu CH (2013) Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. Radiat Oncol 7(8):261CrossRefGoogle Scholar
  5. 5.
    Lin JC, Wang WY, Chen KY, Wei YH, Liang WM, Jan JS, Jiang RS (2004) Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350(24):2461–2470PubMedCrossRefGoogle Scholar
  6. 6.
    Alfieri S, Iacovelli NA, Marceglia S, Lasorsa I, Resteghini C, Taverna F, Mazzocchi A, Orlandi E, Guzzo M, Bianchi R, Fanti D, Pala L, Racca S, Dvir R, Quattrone P, Gloghini A, Volpi CC, Granata R, Bergamini C, Locati L, Licitra L, Bossi P (2017) Circulating pre-treatment Epstein–Barr virus DNA as prognostic factor in locally-advanced nasopharyngeal cancer in a non-endemic area. Oncotarget. PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu WS, Wu MF, Tseng HC, Liu JT, Weng JH, Li YC, Lee JK (2012) The role of pretreatment FDG-PET in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 82(2):561–566PubMedCrossRefGoogle Scholar
  8. 8.
    Hsieh TC, Hsieh CY, Yang TY, Chen TT, Lin CY, Lin CC, Hua CH, Chiu CF, Yeh SP, Sher YP (2015) [18F]-fluorodeoxyglucose positron emission tomography standardized uptake value as a predictor of adjuvant chemotherapy benefits in patients with nasopharyngeal carcinoma. Oncologist 20(5):539–545PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hung TM, Wang HM, Kang CJ, Huang SF, Liao CT, Chan SC, Ng SH, Chen IH, Lin CY, Fan KH, Chang JT (2013) Pretreatment (18)F-FDG PET standardized uptake value of primary tumor and neck lymph nodes as a predictor of distant metastasis for patients with nasopharyngeal carcinoma. Oral Oncol 49(2):169–174PubMedCrossRefGoogle Scholar
  10. 10.
    Chan SC, Chang JT, Lin CY, Ng SH, Wang HM, Liao CT, Chang CJ, Lin SY, Yen TC (2011) Clinical utility of 18F-FDG PET parameters in patients with advanced nasopharyngeal carcinoma: predictive role for different survival endpoints and impact on prognostic stratification. Nucl Med Commun 32(11):989–996PubMedCrossRefGoogle Scholar
  11. 11.
    Chang KP, Tsang NM, Liao CT, Hsu CL, Chung MJ, Lo CW, Chan SC, Ng SH, Wang HM, Yen TC (2012) Prognostic significance of 18F-FDG PET parameters and plasma Epstein–Barr virus DNA load in patients with nasopharyngeal carcinoma. J Nucl Med 53(1):21–28PubMedCrossRefGoogle Scholar
  12. 12.
    Moon SH, Choi JY, Lee HJ, Son YI, Baek CH, Ahn YC, Ahn MJ, Park K, Kim BT (2015) Prognostic value of volume-based positron emission tomography/computed tomography in patients with nasopharyngeal carcinoma treated with concurrent chemoradiotherapy. Clin Exp Otorhinolaryngol 8(2):142–148PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, Maxim P, Quon A, Graves EE, Loo BW Jr, Le QT (2009) Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74(5):1335–1341PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, Wiseman GA, Kostakoglu L, Scheidhauer K, Buck A, Naumann R, Spaepen K, Hicks RJ, Weber WA, Reske SN, Schwaiger M, Schwartz LH, Zijlstra JM, Siegel BA, Cheson BD, Imaging Subcommittee of International Harmonization Project in Lymphoma (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25(5):571–578PubMedCrossRefGoogle Scholar
  15. 15.
    Orlandi E, Iannacone E, Fallai C, Bossi P, Licitra L (2013) Comments on “postoperative intensity-modulated radiotherapy following surgery for oral cavity squamous cell carcinoma: patterns of failure” by Chan and Coll. Oral Oncol 49(10):e38PubMedCrossRefGoogle Scholar
  16. 16.
    Sebastian TB, Manjeshwar RM, Akhurst TJ, Miller JV (2006) Objective PET lesion segmentation using a spherical mean shift algorithm. Med Image Comput Comput Assist Interv 9(Pt 2):782–789PubMedGoogle Scholar
  17. 17.
    Moule RN, Kayani I, Prior T, Lemon C, Goodchild K, Sanghera B, Wong WL, Saunders MI (2011) Adaptive 18fluoro-2-deoxyglucose positron emission tomography/computed tomography-based target volume delineation in radiotherapy planning of head and neck cancer. Clin Oncol (R Coll Radiol) 23(5):364–371CrossRefGoogle Scholar
  18. 18.
    Lee SW, Nam SY, Im KC, Kim JS, Choi EK, Ahn SD, Park SH, Kim SY, Lee BJ, Kim JH (2008) Prediction of prognosis using standardized uptake value of 2-[(18)F] fluoro-2-deoxy-d-glucose positron emission tomography for nasopharyngeal carcinomas. Radiother Oncol 87(2):211–216PubMedCrossRefGoogle Scholar
  19. 19.
    Xiao W, Xu A, Han F, Lin X, Lu L, Shen G, Huang S, Fan W, Deng X, Zhao C (2015) Positron emission tomography-computed tomography before treatment is highly prognostic of distant metastasis in nasopharyngeal carcinoma patients after intensity-modulated radiotherapy treatment: a prospective study with long-term follow-up. Oral Oncol 51(4):363–369PubMedCrossRefGoogle Scholar
  20. 20.
    Shi Q, Yang Z, Zhang Y, Hu C (2014) Adding maximum standard uptake value of primary lesion and lymph nodes in 18F-fluorodeoxyglucose PET helps predict distant metastasis in patients with nasopharyngeal carcinoma. PLoS One 9(7):e103153PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH (2007) Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 69(4):1282–1289PubMedCrossRefGoogle Scholar
  22. 22.
    Mazzola R, Alongi P, Ricchetti F, Fiorentino A, Fersino S, Giaj-Levra N, Salgarello M, Alongi F (2017) 18F-fluorodeoxyglucose-PET/CT in locally advanced head and neck cancer can influence the stage migration and nodal radiation treatment volumes. Radiol Med 122(12):952–959PubMedCrossRefGoogle Scholar
  23. 23.
    Cacicedo J, Fernandez I, Del Hoyo O, Dolado A, Gómez-Suarez J, Hortelano E, Sancho A, Pijoan JI, Alvarez J, Espinosa JM, Gaafar A, Bilbao P (2015) Should PET/CT be implemented in the routine imaging work-up of locally advanced head and neck squamous cell carcinoma? a prospective analysis. Eur J Nucl Med Mol Imaging 42(9):1378–1389PubMedCrossRefGoogle Scholar
  24. 24.
    Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, Wong PS (2006) Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 65(3):726–732PubMedCrossRefGoogle Scholar
  25. 25.
    Delouya G, Igidbashian L, Houle A, Bélair M, Boucher L, Cohade C, Beaulieu S, Filion EJ, Coulombe G, Hinse M, Martel C, Després P, Nguyen-Tan PF (2011) 18F-FDG-PET imaging in radiotherapy tumor volume delineation in treatment of head and neck cancer. Radiother Oncol 101(3):362–368PubMedCrossRefGoogle Scholar
  26. 26.
    Lin J, Shi T (2017) Error-prone DNA polymerase and oxidative stress increase the incidences of A to G mutations in tumors. Oncotarget 8(28):45154–45163PubMedGoogle Scholar
  27. 27.
    Huang Y, Feng M, He Q, Yin J, Xu P, Jiang Q, Lang J (2017) Prognostic value of pretreatment 18F-FDG PET-CT for nasopharyngeal carcinoma patients. Medicine (Baltimore) 96(17):e6721CrossRefGoogle Scholar
  28. 28.
    Chan SC, Chang JT-C, Wang H-M et al (2009) Prediction for distant failure in patients with stage M0 nasopharyngeal carcinoma: the role of standardized uptake value. Oral Oncol 45(1):52–58PubMedCrossRefGoogle Scholar
  29. 29.
    Yang Z, Shi Q, Zhang Y, Pan H, Yao Z, Hu S, Shi W, Zhu B, Zhang Y, Hu C (2015) Pretreatment (18)F-FDG uptake heterogeneity can predict survival in patients with locally advanced nasopharyngeal carcinoma: a retrospective study. Radiat Oncol 8(10):4CrossRefGoogle Scholar
  30. 30.
    Yoon YH, Lee SH, Hong SL, Kim SJ, Roh HJ, Cho KS (2014) Prognostic value of metabolic tumor volume as measured by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in nasopharyngeal carcinoma. Int Forum Allergy Rhinol 4:845–850PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Alessandra Alessi
    • 1
    Email author return OK on get
  • Alice Lorenzoni
    • 1
  • Anna Cavallo
    • 2
  • Barbara Padovano
    • 1
  • Nicola Alessandro Iacovelli
    • 3
  • Paolo Bossi
    • 4
  • Salvatore Alfieri
    • 4
  • Gianluca Serafini
    • 1
  • Carlotta Benedetta Colombo
    • 1
  • Alessandro Cicchetti
    • 5
  • Marta Mira
    • 1
  • Lisa Licitra
    • 4
    • 6
  • Carlo Fallai
    • 3
  • Flavio Crippa
    • 1
  • Ester Orlandi
    • 3
  1. 1.Nuclear Medicine and PET UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  2. 2.Medical Physics UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  3. 3.Radiation Oncology Unit 2Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  4. 4.Medical Oncology Unit 3Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  5. 5.Prostate Cancer ProgramFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  6. 6.University of MilanMilanItaly

Personalised recommendations