Evaluation of US and MRI techniques for carotid stenosis: a novel phantom approach

  • Lilla Bonanno
  • Silvia Marino
  • Rosa Morabito
  • Giancarlo Barbalace
  • Angela Sestito
  • Barbara Testagrossa
  • Giuseppe AcriEmail author


Carotid atherosclerosis is very important in the pathogenesis of cerebral ischemia. Ultrasonography (US) and magnetic resonance imaging (MRI) are the predominant noninvasive techniques capable to identify the presence and stage of intra-plaque hemorrage. In this work, we propose a novel dedicated phantom that can be used for both US and MRI scanners to evaluate carotid atherosclerotic lesions. The phantom consists of a polymethyl metacrylate (PMMA) diagonally crossed by a PMMA hollow cylinder simulating a blood vessel. To simulate a stenosis, we inserted a plastic hollow tube inside the cylinder. Quantitative image analysis, based on accuracy measurements, was performed on two US and two MRI scanners. The accuracy measurements have highlighted the use of the 3.0 T MRI scanner to characterize the vessel stenosis. However, no significant difference between US and MRI techniques was found in Fisher exact test and inter-rater agreement. The concordance correlation coefficient showed a moderate agreement between some methods. Agreement between 3.0 T and other methods results poor, and this could be due to the fact that the 3.0 T has a better resolution compared to a US and MR 1.5 T. These methods seem to have similar efficacies for the evaluation of vessel stenosis, legitimizing the use of the developed phantom as a versatile and reproducible instrument that could be used during quality controls programs.


Carotid atherosclerosis diagnosis Ultrasound Magnetic resonance imaging Quality controls 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106(11):1368–1373. CrossRefPubMedGoogle Scholar
  2. 2.
    Bonanno L, Sottile F, Ciurleo R, Di Lorenzo G, Bruschetta D, Bramanti A, Ascenti G, Bramanti P, Marino S (2017) Automatic algorithm for segmentation of atherosclerotic carotid plaque. J Stroke Cerebrovasc Dis 26(2):411–416. CrossRefPubMedGoogle Scholar
  3. 3.
    Kampschulte A, Ferguson MS, Kerwin WS, Polissar NL, Chu B, Saam T, Hatsukami TS, Yuan C (2004) Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 110(20):3239–3244. CrossRefPubMedGoogle Scholar
  4. 4.
    Yuan C, Mitsumori LM, Beach KW, Maravilla KR (2001) Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221(2):285–299. CrossRefPubMedGoogle Scholar
  5. 5.
    Torfeh T, Beaumont S, Guédon JP, Normand N, Denis E (2007) Software tools dedicated for an automatic analysis of the CT scanner Quality Control’s Images. In: Conf proc IEEE eng med biol soc.
  6. 6.
    Bonanno L, Marino S, Bramanti P, Sottile F (2015) Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis. Ultrasound Med Biol 41(2):509–516. CrossRefPubMedGoogle Scholar
  7. 7.
    Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol 87:185–204. CrossRefPubMedGoogle Scholar
  8. 8.
    Shung KK (2015) Diagnostic ultrasound: imaging and blood flow measurements, 2nd edn. CRC Press Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  9. 9.
    Yuan C, Zhang SX, Polissar NL, Echelard D, Ortiz G, Davis JW, Ellington E (2002) Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105:181–185. CrossRefPubMedGoogle Scholar
  10. 10.
    Moody AR, Murphy RE, Morgan PS, Martel AL, Delay GS, Allder S, MacSweeney ST, Tennant WG, Gladman J, Lowe J, Hunt BJ (2003) Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 107:3047–3052. CrossRefPubMedGoogle Scholar
  11. 11.
    Serfaty JM, Chaabane L, Tabib A, Chevallier JM, Briguet A, Douek PC (2001) Atherosclerotic plaques: classification and characterization with T2-weighted high-spatial-resolution MR imaging-an in vitro study. Radiology 219:403–410. CrossRefPubMedGoogle Scholar
  12. 12.
    Ouhlous M, Flach HZ, de Weert TT, Hendriks JM, van Sambbek MRHM, Dippel DWJ, Pattynama PMT, van der Lugt A (2005) Carotid plaque composition and cerebral infarction: MR imaging study. AJNR Am J Neuroradiol 26:1044–1049PubMedGoogle Scholar
  13. 13.
    Underhill HR, Kerwin WS, Hatsukami TS, Yuan C (2006) Automated measurement of mean wall thickness in the common carotid artery by MRI: a comparison to intima-media thickness by B-mode ultrasound. J Magn Reson Imaging 24:379–387. CrossRefPubMedGoogle Scholar
  14. 14.
    Crowe LA, Ariff B, Keegan J, Mohiaddin RH, Yang GZ, Hughes AD, McG Thom SA, Firmin DN (2005) Comparison between three-dimensional volume-selective turbo spin-echo imaging and two-dimensional ultrasound for assessing carotid artery structure and function. J Magn Reson Imaging 21:282–289. CrossRefPubMedGoogle Scholar
  15. 15.
    Mani V, Aguiar SH, Itskovich VV, Weinshelbaum KB, Postley JE, Wasenda EJ, Aguinaldo JGS, Samber DD, Fayad ZA (2006) Carotid black blood MRI burden of atherosclerotic disease assessment correlates with ultrasound intima media thickness. J Cardiovasc Magn Reson 8:529–534. CrossRefPubMedGoogle Scholar
  16. 16.
    Acri G, Tripepi MG, Causa F, Testagrossa B, Novario R, Vermiglio G (2012) Slice-thickness evaluation in CT and MRI: an alternative computerised preocedure. Radiol med 17:507–518. CrossRefGoogle Scholar
  17. 17.
    Chen CC, Wan YL, Wai YY, Liu HL (2004) Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 17:279–284. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Goodsitt MM, Carson PL, Witt S, Hykes DL, Kofler JM Jr (1998) Real-time B-mode ultrasound quality control test procedures—report of AAPM ultrasound task group no. 1. Med Phys 25:1385–1406. CrossRefPubMedGoogle Scholar
  19. 19.
    Rampado O, Isoardi P, Ropolo R (2006) Quantitative assessment of computed radiography quality control parameters. Phys Med Biol 51:1577–1593. CrossRefPubMedGoogle Scholar
  20. 20.
    Boone JM, Cody DD, Fisher JR, Frey GD, Glasser H, Gray JE, Haus AG, Hefner LV, Holmes RL Jr, Kobistek RJ, Ranallo FN, Rauch PL, Rossi RP, Seibert JA, Strauss KJ, Suleiman OH, Schenck JR, Thompson SK (2002) Quality control in diagnostic radiology. AAPM Report No 74Google Scholar
  21. 21.
    Ramnarine KV, Anderson T, Hoskins PR (2001) Construction and geometric stability of physiological flow rate wall-less stenosis phantoms. Ultrasound Med Biol 27(2):245–250. CrossRefPubMedGoogle Scholar
  22. 22.
    Nasiraei-Moghaddam A, Behrens G, Fatouraee N, Agarwal R, Choi ET, Amini AA (2004) Factors affecting the accuracy of pressure measurements in vascular stenoses from phase-contrast MRI. Magn Reson Med 52:300–309. CrossRefPubMedGoogle Scholar
  23. 23.
    Yamada M, Jinzaki M, Kuribayashi S, Sato K, Tanami Y, Yun S, Sasaki K, Okano Y, Sugisawa K (2005) Quantitative evaluation of coronary arterial stenosis using 16-slice multidetector-row computed tomography: preliminary evaluation of phantom study. J Comput Assist Tomogr 29(3):382–386. CrossRefPubMedGoogle Scholar
  24. 24.
    Vermiglio G, Acri G, Testagrossa B, Bramanti P, Bramanti A (2015) Universal phantom structure for quality inspections both on computerized tomography and on magnetic resonance tomography. Publication number: WO2015/092776 International Application No.: PCT/IB2014/067215Google Scholar
  25. 25.
    Samavat H, Evans JA (2006) An ideal blood mimicking fluid for doppler ultrasound phantom. J Med Phys 31(4):275–278. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    King DM, Hangiandreou NJ, Tradup DJ, Stekel SF (2010) Evaluation of a low-cost liquid ultrasound test object for detection of transducer artefacts. Phys Med Biol 55:N557–N570. CrossRefPubMedGoogle Scholar
  27. 27.
    Dabrowski W, Dunmore-Buyze J, Rankin RN, Holdsworth DW, Fenster A (1997) A real vessel phantom for imaging experimentation. Med Phys 24(5):687–693. CrossRefPubMedGoogle Scholar
  28. 28.
    Den Hartog AG, Bovens SM, Koning W, Hendrikse J, Luijten PR, Moll FL, Pasterkamp G, de Borst GJ (2013) Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis. Eur J Vasc Endovasc Surg 45(1):7–21. CrossRefGoogle Scholar
  29. 29.
    Kwee RM, Truijman MTB, van Oostenbrugge RJ, Mess WH, Prins MH, Franke CL, Korten AGGC, Wildberger JE, Kooi ME (2012) Longitudinal MRI study on the natural history of carotid artery plaques in symptomatic patients. PLoS ONE 7(7):e42472. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhu J, Bornstedt A, Merkle N, Liu N, Rottbauer W, Ma G, Rasche V (2016) T2-prepared segmented 3D-gradient-echo for fast T2-weighted high-resolution three-dimensional imaging of the carotid artery wall at 3T: a feasibility study. BioMed Eng OnLine 15(Suppl 2):451–460. CrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  1. 1.Department of BIOMORFUniversity of MessinaMessinaItaly
  2. 2.IRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly
  3. 3.Biomedical Department of Internal and Specialistic MedicineUniversity of PalermoPalermoItaly
  4. 4.Casa di Cura “Cristo Re”MessinaItaly
  5. 5.High School Campo Calabro (RC)Campo CalabroItaly

Personalised recommendations