Advertisement

Late toxicity of image-guided hypofractionated radiotherapy for prostate: non-randomized comparison with conventional fractionation

  • Barbara Alicja Jereczek-Fossa
  • Alessia Surgo
  • Patrick Maisonneuve
  • Andrea Maucieri
  • Marianna Alessandra Gerardi
  • Dario Zerini
  • Giulia Marvaso
  • Delia Ciardo
  • Stefania Volpe
  • Damaris Patricia Rojas
  • Giulia Riva
  • Ombretta Alessandro
  • Samantha Dicuonzo
  • Giuseppe Fanetti
  • Paola Romanelli
  • Anna Starzyńska
  • Federica Cattani
  • Raffaella Cambria
  • Cristiana Fodor
  • Cristina Garibaldi
  • Chiara Romanò
  • Ottavio De Cobelli
  • Roberto Orecchia
RADIOTHERAPY

Abstract

Purpose

To evaluate the incidence and predictors for late toxicity and tumor outcome after hypofractionated radiotherapy using three different image-guided radiotherapy (IGRT) systems (hypo-IGRT) compared with conventional fractionation without image guidance (non-IGRT).

Methods and materials

We compared the late rectal and urinary toxicity and outcome in 179 prostate cancer patients treated with hypo-IGRT (70.2 Gy/26 fractions) and 174 non-IGRT patients (80 Gy/40 fractions). Multivariate analysis was performed to define predictors for late toxicity. 5- and 8-year recurrence-free survival (RFS) and overall survival (OS) were analyzed.

Results

Mean follow-up was 81 months for hypo-IGRT and 90 months for non-IGRT group. Mainly mild late toxicity was observed: Hypo-IGRT group experienced 65 rectal (30.9% G1/G2; 6.3% G3/G4) and 105 urinary events (56% G1/G2; 4% G3/G4). 5- and 8-year RFS rates were 87.5% and 86.8% (hypo-IGRT) versus 80.4% and 66.8% (non-IGRT). 5- and 8-year OS rates were 91.3% and 82.7% in hypo-IGRT and 92.2% and 84% in non-IGRT group. Multivariate analysis showed that hypo-IGRT is a predictor for late genitourinary toxicity, whereas hypo-IGRT, acute urinary toxicity and androgen deprivation therapy are predictors for late rectal toxicity. Advanced T stage and higher Gleason score (GS) were correlated with worse RFS.

Conclusions

A small increase in mild late toxicity, but not statistically significant increase in severe late toxicity in the hypo-IGRT group when compared with conventional non-IGRT group was observed. Our study confirmed that IGRT allows for safe moderate hypofractionation, offering a shorter overall treatment time, a good impact in terms of RFS and providing potentially more economic health care.

Keywords

Hypofractionation Conventional fractionation Image-guided radiotherapy Prostate cancer Late toxicity 

Notes

Acknowledgements

This work was partially supported by the research grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC): IG-13218 and IG-14300 and research grants from Fondazione IEO-CCM and Fondazione Veronesi. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethical approval

This article does not contain any studies with animals performed by any of the authors

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual patients included in the study.

References

  1. 1.
    Jereczek-Fossa BA, Orecchia R (2007) Evidence-based radiation oncology: definitive, adjuvant and salvage radiotherapy for non-metastatic prostate cancer. Radiother Oncol 84:197–215.  https://doi.org/10.1016/j.radonc.2007.04.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Zietman AL, Bae K, Slater JD et al (2010) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long term results from Proton Radiation Oncology Group/American College Of Radiology 95–09. J Clin Oncol 28:1106–1111.  https://doi.org/10.1200/JCO.2009.25.8475 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dearnaley DP, Jovic G, Syndikus I et al (2014) Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol 15:464–473.  https://doi.org/10.1016/S1470-2045(14)70040-3 CrossRefGoogle Scholar
  4. 4.
    Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation vs. conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78:11–18.  https://doi.org/10.1016/j.ijrobp.2009.07.1691 CrossRefPubMedGoogle Scholar
  5. 5.
    Jereczek-Fossa BA, Vavassori A, Fodor C et al (2008) Dose escalation for prostate cancer using the three-dimensional conformal dynamic arc technique: analysis of 542 consecutive patients. Int J Radiat Oncol Biol Phys 71:784–794.  https://doi.org/10.1016/j.ijrobp.2007.10.041 CrossRefPubMedGoogle Scholar
  6. 6.
    Miralbell R, Roberts SA, Zubizarreta et al (2012) Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys 82:e17–e24.  https://doi.org/10.1016/j.ijrobp.2010.10.075 CrossRefGoogle Scholar
  7. 7.
    Dasu A, Toma-Dasu I (2012) Prostate α/β revisited — an analysis of clinical results from 14168 patients. Acta Oncol 51:963–974.  https://doi.org/10.3109/0284186X.2012.719635 CrossRefGoogle Scholar
  8. 8.
    Jereczek-Fossa BA, Cattani F, D’Onofrio A et al (2006) Dose distribution in 3-dimensional conformal radiotherapy for prostate cancer: comparison of two treatment techniques (six coplanar fields and two dynamic arcs). Radiother Oncol 81:294–302.  https://doi.org/10.1016/j.radonc.2006.10.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Pollack A, Hanlon AL, Horwitz EM et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64:518–526.  https://doi.org/10.1016/j.ijrobp.2005.07.970 CrossRefGoogle Scholar
  10. 10.
    Brenner DJ, Martinez AA, Edmundson GK et al (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13CrossRefGoogle Scholar
  11. 11.
    Jereczek-Fossa BA, Zerini D, Fodor C et al (2011) Acute toxicity of image-guided hypofractionated radiotherapy for prostate cancer: non randomized comparison with conventional fractionation. Urol Oncol 29:523–532.  https://doi.org/10.1016/j.urolonc.2009.10.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346.  https://doi.org/10.1016/0360-3016(95)00060-C CrossRefPubMedGoogle Scholar
  13. 13.
    Roach M 3rd, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974.  https://doi.org/10.1016/j.ijrobp.2006.04.029 CrossRefGoogle Scholar
  14. 14.
    Prostate cancer. In: National Comprehensive Cancer network Clinical Practice Guidelines in Oncology, version 1.2007. Jenkinstown, PA: National Comprehensive Cancer Network, March 2007 (http://www.nccn.org/professionals/physician_gls/default.asp). Accessed 11 Sept 2018
  15. 15.
    Koontz BF, Bossi A, Cozzarini C et al (2015) A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol 68:683–691.  https://doi.org/10.1016/j.eururo.2014.08.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Arcangeli S, Greco C (2016) Hypofractionated radiotherapy for organ-confined prostate cancer: is less more? Nat Rev Urol 13:400–408.  https://doi.org/10.1038/nrurol.2016.106 CrossRefPubMedGoogle Scholar
  17. 17.
    Dulaney CR, Osula DO, Yang ES et al (2016) Prostate radiotherapy in the era of advanced imaging and precision medicine. Prostate Cancer 2016:4897515.  https://doi.org/10.1155/2016/4897515 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dearnaley D, Syndikus I, Mossop H et al (2016) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 17:1047–1060.  https://doi.org/10.1016/S1470-2045(16)30102-4 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hoffman KE, Voong KR, Pugh TJ et al (2014) Risk of Late toxicity in men receiving dose-escalated hypofractionated intensity modulated prostate radiation therapy: results from a randomized trial. Int J Radiat Oncol Biol Phys 88:1074–1084.  https://doi.org/10.1016/j.ijrobp.2014.01.015 CrossRefPubMedGoogle Scholar
  20. 20.
    Arcangeli S, Strigari L, Gomellini S et al (2012) Updated results and patterns of failure in a randomized hypofractionation trial for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 84:1172–1178.  https://doi.org/10.1016/j.ijrobp.2012.02.049 CrossRefGoogle Scholar
  21. 21.
    Pollack A, Walker G, Horwitz EM et al (2013) Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol 31:3860–3868.  https://doi.org/10.1200/JCO.2013.51.1972 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee WR, Dignam JJ, Amin MB et al (2016) Randomized phase III non inferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol 34:2325–2332.  https://doi.org/10.1200/JCO.2016.67.0448 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Incrocci L, Wortel RC, Alemayehu WG et al (2016) Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 17:1061–1069.  https://doi.org/10.1016/S1470-2045(16)30070-5 CrossRefGoogle Scholar
  24. 24.
    Di Franco R, Borzillo V, Ravo V et al (2017) Rectal/urinary toxicity after hypofractionated vs. conventional radiotherapy in high risk prostate cancer: systematic review and meta analysis. Eur Rev Med Pharmacol Sci 21:3563–3575PubMedGoogle Scholar
  25. 25.
    Catton C, Lukka H, Levine M et al (2016) A randomized trial of a shorter radiation fractionation schedule for the treatment of localized prostate cancer. J Clin Oncol 34 (suppl; abstr 5003)CrossRefGoogle Scholar
  26. 26.
    Benjamin LC, Tree AC, Dearnaley DP (2017) The role of hypofractionated radiotherapy in prostate cancer. Curr Oncol Rep 19:30.  https://doi.org/10.1007/s11912-017-0584-7 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Folkert MR, Timmerman RD (2017) Stereotactic ablative body radiosurgery (SABR) or Stereotactic body radiation therapy (SBRT). Adv Drug Deliv Rev 109:3–14.  https://doi.org/10.1016/j.addr.2016.11.005 CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Barbara Alicja Jereczek-Fossa
    • 1
    • 2
  • Alessia Surgo
    • 2
  • Patrick Maisonneuve
    • 3
  • Andrea Maucieri
    • 2
  • Marianna Alessandra Gerardi
    • 2
  • Dario Zerini
    • 2
  • Giulia Marvaso
    • 2
  • Delia Ciardo
    • 2
  • Stefania Volpe
    • 1
    • 2
  • Damaris Patricia Rojas
    • 1
    • 2
  • Giulia Riva
    • 1
    • 2
  • Ombretta Alessandro
    • 1
    • 2
  • Samantha Dicuonzo
    • 2
  • Giuseppe Fanetti
    • 1
    • 2
  • Paola Romanelli
    • 2
  • Anna Starzyńska
    • 4
  • Federica Cattani
    • 5
  • Raffaella Cambria
    • 5
  • Cristiana Fodor
    • 2
  • Cristina Garibaldi
    • 5
  • Chiara Romanò
    • 5
    • 6
  • Ottavio De Cobelli
    • 1
    • 7
  • Roberto Orecchia
    • 8
  1. 1.Department of Oncology and Hemato-OncologyUniversity of MilanMilanItaly
  2. 2.Department of RadiotherapyEuropean Institute of OncologyMilanItaly
  3. 3.Division of Epidemiology and BiostatisticsEuropean Institute of OncologyMilanItaly
  4. 4.Department of Oral SurgeryMedical University of GdańskGdańskPoland
  5. 5.Department of Medical PhysicsEuropean Institute of OncologyMilanItaly
  6. 6.Department of PhysicsUniversity of MilanMilanItaly
  7. 7.Department of UrologyEuropean Institute of OncologyMilanItaly
  8. 8.Scientific DirectorateEuropean Institute of OncologyMilanItaly

Personalised recommendations