La radiologia medica

, Volume 124, Issue 4, pp 282–289 | Cite as

Soft tissue sarcomas: new opportunity of treatment with PARP inhibitors?

  • Monica MangoniEmail author
  • Mariangela Sottili
  • Giulia Salvatore
  • Domenico Campanacci
  • Guido Scoccianti
  • Giovanni Beltrami
  • Camilla Delli Paoli
  • Luca Dominici
  • Virginia Maragna
  • Emanuela Olmetto
  • Icro Meattini
  • Isacco Desideri
  • Pierluigi Bonomo
  • Daniela Greto
  • Lorenzo Livi



Poly(ADP-ribose) polymerases (PARP) are a large family of enzymes involved in several cellular processes, including DNA single-strand break repair via the base-excision repair pathway. PARP inhibitors exert antitumor activity by both catalytic PARP inhibition and PARP–DNA trapping, moreover PARP inhibition represents a potential synthetic lethal approach against cancers with specific DNA-repair defects. Soft tissue sarcoma (STSs) are a heterogeneous group of mesenchymal tumors with locally destructive growth, high risk of recurrence and distant metastasis.


The purpuse of this review is to provide an overview of the main preclinical and clinical data on use of PARPi in STSs and of effect and safety of combination of PARPi with irradiation.


Due to numerous genomic alterations in STSs, the DNA damage response pathway can offer an interesting target for biologic therapy. Preclinical and clinical studies showed promising results, with the most robust evidences of PARPi efficacy obtained on Ewing sarcoma bearing EWS–FLI1 or EWS–ERG genomic fusions. The activity of PARP inhibitors resulted potentiated by chemotherapy and radiation. Although mechanisms of synergisms are not completely known, combination of radiation therapy and PARP inhibitors exerts antitumor effect by accumulation of unrepaired DNA damage, arrest in G2/M, activity both on oxic and hypoxic cells, reoxygenation by effect on vessels and promotion of senescence. Early trials have shown a good tolerance profile.


The use of PARP inhibitors in advanced stage STSs, alone or combined in multimodal treatments, is of great interest and warrants further investigations.


Poly(ADP-ribose) polymerases (PARP) Soft tissue sarcoma (STSs) DNA damage response pathway Radiation therapy 



This study was funded by the Istituto Toscano Tumori.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Amé JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26:882–893CrossRefGoogle Scholar
  2. 2.
    Sonnenblick A, de Azambuja E, Azim HA et al (2015) An update on PARP inhibitors–moving to the adjuvant setting. Nat Rev Clin Oncol. 12:27–41CrossRefGoogle Scholar
  3. 3.
    Scott CL, Swisher EM, Kaufmann SH (2015) Poly(ADP-Ribose)Polymerase inhibitors: recent advances and future development. J Clin Oncol 33:1397–1406CrossRefGoogle Scholar
  4. 4.
    Lesueur P, Chevalier F, Austry JB et al (2017) Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget 8:69105–69124CrossRefGoogle Scholar
  5. 5.
    Wang L, Liang C, Li F et al (2017) PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs. Int J Mol Sci 18:2111CrossRefGoogle Scholar
  6. 6.
    Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5:387–393CrossRefGoogle Scholar
  7. 7.
    Gill SJ, Travers J, Pshenichnaya I et al (2015) Combinations of PARP inhibitors with temozolomide drive PARP1 trapping and apoptosis in Ewing’s sarcoma. PLoS ONE 10(10):e0140988CrossRefGoogle Scholar
  8. 8.
    McCabe N, Turner NC, Lord CJ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Can Res 66(16):8109–8115CrossRefGoogle Scholar
  9. 9.
    Lim JS, Tan DSP (2017) Understanding resistance mechanisms and expanding the therapeutic utility of PARP inhibitors. Cancers 9(8):109CrossRefGoogle Scholar
  10. 10.
    Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (2012) World Health Organization Classification of tumours of soft tissue and bone, vol 5, 4th edn. International Agency for Research on Cancer (IARC) 2013, Lyon, p 468Google Scholar
  11. 11.
    Steppan DA, Pratilas CA, Loeb DM (2017) Targeted therapy for soft tissue sarcomas in adolescents and young adults. Adolesc Health Med Ther 8:41–55CrossRefGoogle Scholar
  12. 12.
    Dangoor A, Seddon B, Gerrand C et al (2016) UK guidelines for the management of soft tissue sarcomas. Clin Sarcoma Res 6:20CrossRefGoogle Scholar
  13. 13.
    Saponara M, Stacchiotti S, Casali PG, Gronchi A (2017) (Neo) adjuvant treatment in localised soft tissue sarcoma: the unsolved affair. Eur J Cancer 70:1–11CrossRefGoogle Scholar
  14. 14.
    Rimondi E, Benassi MS, Bazzocchi A et al (2016) Translational research in diagnosis and management of soft tissue tumours. Cancer Imaging 16:13CrossRefGoogle Scholar
  15. 15.
    Gibault L, Pérot G, Chibon F et al (2011) New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J Pathol 223(1):64–71CrossRefGoogle Scholar
  16. 16.
    Brenner JC, Feng FY, Han S et al (2012) PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res 72:1608–1613CrossRefGoogle Scholar
  17. 17.
    Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599CrossRefGoogle Scholar
  18. 18.
    Engert F, Kovac M, Baumhoer D et al (2017) Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget 8(30):48794–48806CrossRefGoogle Scholar
  19. 19.
    Brenner JC, Ateeq B, Li Y et al (2011) Mechanistic rationale for inhibition of poly(ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678CrossRefGoogle Scholar
  20. 20.
    Annemiek M, Van Maldegem A, Judith V et al (2016) Ewing sarcoma: The clinical relevance of the insulin-like growth factor 1 and the poly-ADP-ribose-polymerase pathway. Eur J Cancer 53:171–180CrossRefGoogle Scholar
  21. 21.
    Norris RE, Adamson PC, Nguyen VT, Fox E (2014) Preclinical evaluation of the PARP inhibitor, olaparib, in combination with cytotoxic chemotherapy in pediatric solid tumors. Pediatr Blood Cancer 61:145–150CrossRefGoogle Scholar
  22. 22.
    Fam HK, Walton C, Mitra SA et al (2013) TDP1 and PARP1 deficiency are cytotoxic to rhabdomyosarcoma cells. Mol Cancer Res 11(10):1179–1192CrossRefGoogle Scholar
  23. 23.
    Yamasaki H, Miyamoto M, Yamamoto Y et al (2016) Synovial sarcoma cell lines showed reduced DNA repair activity and sensitivity to a PARP inhibitor. Genes Cells 21:852–860CrossRefGoogle Scholar
  24. 24.
    Li S, Cui Z, Meng X (2016) Knockdown of PARP-1 inhibits proliferation and ERK signals, increasing drug sensitivity in osteosarcoma U2OS cells. Oncol Res 24:279–286CrossRefGoogle Scholar
  25. 25.
    Ordóñez JS, Amaral AT, Carcaboso AM et al (2015) The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin. Oncotarget 6(22):18875–18890CrossRefGoogle Scholar
  26. 26.
    Pignochino Y, Capozzi F, D’Ambrosio L et al (2017) PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models. Mol Cancer 16:86CrossRefGoogle Scholar
  27. 27.
    Laroche A, Chaire V, Le Loarer F et al (2017) Activity of trabectedin and the PARP inhibitor rucaparib in soft-tissue sarcomas. J Hematol Oncol 10(1):84CrossRefGoogle Scholar
  28. 28.
    Lockett KL, Hall MC, Xu J et al (2004) The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64:6344–6348CrossRefGoogle Scholar
  29. 29.
    Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575CrossRefGoogle Scholar
  30. 30.
    Stewart E, Goshorn R, Bradley C et al (2014) Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 9(3):829–841CrossRefGoogle Scholar
  31. 31.
    Smith MA, Kang M, Reynolds CP et al (2013) Pediatric preclinical testing program (PPTP) evaluation of BMN 673, an inhibitor of Poly-ADP Ribose Polymerase (PARP), alone and with Temozolomide. Mol Cancer Ther 12(11S):C206CrossRefGoogle Scholar
  32. 32.
    Choy E, Butrynski JE, Harmon DC et al (2014) Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemo-therapy. BMC Cancer 14:813CrossRefGoogle Scholar
  33. 33.
    Vormoor B, Curtin NJ (2014) Poly(ADP-ribose) polymerase inhibitors in Ewing sarcoma. Curr Opin Oncol 26(4):428–433CrossRefGoogle Scholar
  34. 34.
    de Bono J, Ramanathan RK, Mina L et al (2017) Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov 7(6):620–629CrossRefGoogle Scholar
  35. 35.
    Grignani G, D’Ambrosio L, Pignochino Y et al (2016) A phase 1b trial with the combination of trabectedin and olaparib in relapsed patients (pts) with advanced and unresectable bone and soft tissue sarcomas (BSTS): an Italian sarcoma group (ISG) study. J Clin Oncol 34(15S):11018CrossRefGoogle Scholar
  36. 36.
    Shunkwiler L, Ferris G, Kunos C (2013) Inhibition of Poly(ADP-Ribose) polymerase enhances radiochemosensitivity in cancers proficient in DNA double-strand break repair. Int J Mol Sci 14:3773–3785CrossRefGoogle Scholar
  37. 37.
    Verhagen CVM, de Haan R, Hageman F et al (2015) Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother Oncol 116(3):358–365CrossRefGoogle Scholar
  38. 38.
    Cieslar-Pobuda A, Saenko Y, Rzeszowska-Wolny J (2012) PARP-1 inhibition induces a late increase in the level of reactive oxygen species in cells after ionizing radiation. Mutat Res 732:9–15CrossRefGoogle Scholar
  39. 39.
    Hastak K, Bhutra S, Parry R, Ford JM (2017) Poly (ADP-ribose) polymerase inhibitor, an effective radiosensitizer in lung and pancreatic cancers. Oncotarget 8(16):26344–26355CrossRefGoogle Scholar
  40. 40.
    Rae C, Mairs RJ (2017) Evaluation of the radiosensitizing potency of chemotherapeutic agents in prostate cancer cells. Int J Rad Biol 93(2):194–203CrossRefGoogle Scholar
  41. 41.
    Chan N, Koritzinsky M, Zhao H et al (2008) Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res 68:605–614CrossRefGoogle Scholar
  42. 42.
    Jiang Y, Verbiest T, Devery AM et al (2016) Hypoxia potentiates the radiation-sensitizing effect of olaparib in human non-small cell lung cancer xenografts by contextual synthetic lethality. Int J Radiat Oncol Biol Phys 95(2):772–781CrossRefGoogle Scholar
  43. 43.
    Gani C, Coackley C, Kumareswaran R et al (2015) In vivo studies of the PARP inhibitor, AZD-2281, in combination with fractionated radiotherapy: an exploration of the therapeutic ratio. Radiother Oncol 116(3):486–494CrossRefGoogle Scholar
  44. 44.
    Albert JM, Cao C, Kim KW et al (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13:3033–3042CrossRefGoogle Scholar
  45. 45.
    Gewirtz DA, Alotaibi M, Yakovlevb VA, Povirk LF (2016) Tumor cell recovery from senescence induced by radiation with PARP inhibition. Radiat Res 186(4):327–332CrossRefGoogle Scholar
  46. 46.
    Lee HJ, Yoon C, Schmidt B et al (2013) Combining poly(ADP-ribose)polymerase-1 (PARP-1) inhibition and radiation in Ewing sarcoma results in lethal DNA damage. Mol Cancer Ther 12(11):2591–2600CrossRefGoogle Scholar
  47. 47.
    Vormoor B, Wilkinson S, Harvey F, et al. (2012) Ewing’s sarcoma cells can be sensitized to temozolomide and to a lesser extent to radiotherapy by co-treatment with a PARP-inhibitor (AG014699). Eur J Cancer 48 (S6):106–107;349Google Scholar
  48. 48.
    Mangoni M, Sottili M, Gerini C et al (2016) Effect of PARP-1 inhibition on human soft tissue sarcoma cells radiosensitivity. Radiotherapy Oncology. 119(1):S956CrossRefGoogle Scholar
  49. 49.
    Chabot P, Hsia TC, Ryu JS et al (2017) Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study. J Neurooncol 131(1):105–115CrossRefGoogle Scholar
  50. 50.
    Kleinberg L, Supko JG, Mikkelsen T et al (2013) Phase I adult brain tumor consortium (ABTC) trial of ABT-888 (veliparib), temozolomide (TMZ), and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM) including pharmacokinetic (PK) data. J Clin Oncol 31(15S):2065Google Scholar
  51. 51.
    Raben D, Bowles D, Waxweiler T et al (2016) SP- 0298: phase I results of PARPi (Olaparib)+  RT+ cetuximab in LAHNSCC. Radiother Oncol 119:S138–S139CrossRefGoogle Scholar
  52. 52.
    Jagsi R, Grifth KA, Bellon JR et al (2015) TBCRC 024 Initial results: a multicenter phase 1 study of veliparib administered concurrently with chest wall and nodal radiation therapy in patients with inflammatory or locoregionally recurrent breast cancer. Int J Radiat Oncol Biol Phys 93:S137CrossRefGoogle Scholar
  53. 53.
    Reiss KA, Herman JM, Armstrong D et al (2017) A final report of a phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy (LDFWAR) in patients with advanced solid malignancies and peritoneal carcinomatosis with a dose escalation in ovarian and fallopian tube cancers. Gynecol Oncol 144(3):486–490CrossRefGoogle Scholar
  54. 54.
    Czito BG, Deming DA, Jameson GS et al (2017) Safety and tolerability of veliparib combined with capecitabine plus radiotherapy in patients with locally advanced rectal cancer: a phase 1b study. Lancet Gastroenterol Hepatol 2(6):418–426CrossRefGoogle Scholar
  55. 55.
    McMahon M, Frangova TG, Henderson CJ, Wolf CR (2016) Olaparib, alone or in combination with ionizing radiation, exacerbates DNA damage in normal tissues, as revealed by a new p21 reporter mouse. Mol Cancer Res 14(12):1195–1203CrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Monica Mangoni
    • 1
    • 3
    Email author
  • Mariangela Sottili
    • 1
    • 3
  • Giulia Salvatore
    • 1
    • 3
  • Domenico Campanacci
    • 2
    • 3
  • Guido Scoccianti
    • 2
    • 3
  • Giovanni Beltrami
    • 2
    • 3
  • Camilla Delli Paoli
    • 1
  • Luca Dominici
    • 1
  • Virginia Maragna
    • 1
  • Emanuela Olmetto
    • 1
  • Icro Meattini
    • 1
    • 3
  • Isacco Desideri
    • 1
    • 3
  • Pierluigi Bonomo
    • 1
    • 3
  • Daniela Greto
    • 1
    • 3
  • Lorenzo Livi
    • 1
    • 3
  1. 1.Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Section of Radiation OncologyUniversity of FlorenceFlorenceItaly
  2. 2.Department of Orthopaedic OncologyAzienda Ospedaliera Universitaria CareggiFlorenceItaly
  3. 3.ITT, Istituto Toscano TumoriFlorenceItaly

Personalised recommendations