La radiologia medica

, Volume 123, Issue 5, pp 345–350 | Cite as

Analysis of CT features and quantitative texture analysis in patients with thymic tumors: correlation with grading and staging

  • Angelo Iannarelli
  • Beatrice Sacconi
  • Francesca Tomei
  • Marco Anile
  • Flavia Longo
  • Mario Bezzi
  • Alessandro Napoli
  • Luca Saba
  • Michele Anzidei
  • Giulia D’Ovidio
  • Roberto Scipione
  • Carlo Catalano
CHEST RADIOLOGY
  • 196 Downloads

Abstract

Objectives

To evaluate potential relationship between qualitative CT features, quantitative texture analysis (QTA), histology, WHO staging, Masaoka classification and myasthenic syndrome in patients with thymic tumors.

Materials and methods

Sixteen patients affected by histologically proven thymic tumors were retrospectively included in the study population. Clinical information, with special regard to myasthenic syndrome and serological positivity of anti-AchR antibodies, were recorded. Qualitative CT evaluation included the following parameters: (a) location; (b) tumor edges; (c) necrosis; (d) pleural effusion; (e) metastases; (f) chest wall infiltration; (g) tumor margins. QTA included evaluation of “Mean” (M), “Standard Deviation” (SD), “Kurtosis” (K), “Skewness” (S), “Entropy” (E), “Shape from Texture” (TX_sigma) and “average of positive pixels” (MPP). Pearson–Rho test was used to evaluate the relationship of continuous non-dichotomic parameters, whereas Mann–Whitney test was used for dichotomic parameters.

Results

Histological evaluation demonstrated thymoma in 12 cases and thymic carcinoma in 4 cases. Tumor necrosis was significantly correlated with QTA Mean (p = 0.0253), MPP (p = 0.0417), S (p = 0.0488) and K (p = 0.0178). WHO staging was correlated with Mean (p = 0.0193), SD (p = 0.0191) and MPP (p = 0.0195). Masaoka classification was correlated with Mean (p = 0.0322), MPP (p = 0.0315), skewness (p = 0.0433) and Kurtosis (p = 0.0083). Myasthenic syndrome was significantly associated with Mean (p = 0.0211) and MPP (p = 0.0261), whereas tumor size was correlated with Mean (p = 0.0241), entropy (p = 0.0177), MPP (p = 0.0468), skewness (p = 0.009) and Kurtosis (p = 0.006).

Conclusion

Our study demonstrates significant relationship between radiomics parameters, histology, grading and clinical manifestations of thymic tumors.

Keywords

Quantitative texture analysis Computed tomography Thymic neoplasm Masaoka WHO staging system 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Colen R, Foster I, Gatenby R, Giger ME, Gillies R, Gutman D, Heller M, Jain R, Madabhushi A, Madhavan S, Napel S, Rao A, Saltz J, Tatum J, Verhaak R, Whitman G (2014) NCI workshop report: clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl Oncol 7(5):556–569CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN, Holder CA, Wintermark M, Rao A, Colen RR, Kirby J, Freymann J, Jaffe CC, Mikkelsen T, Flanders A (2014) Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2):484–493CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Prasanna P, Patel J, Partovi S (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 27(10):4188–4197CrossRefPubMedGoogle Scholar
  4. 4.
    Xi YB, Guo F, Xu ZL (2017) Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Reson Imaging.  https://doi.org/10.1002/jmri.25860 Google Scholar
  5. 5.
    Karlo CA, Di Paolo PL, Chaim J, Hakimi AA, Ostrovnaya I, Russo P, Hricak H, Motzer R, Hsieh JJ, Akin O (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2):464–471CrossRefPubMedGoogle Scholar
  6. 6.
    Farber NJ, Kim CJ, Modi PK (2017) Renal cell carcinoma: the search for a reliable biomarker. ransl. Cancer Res 6(3):620–632Google Scholar
  7. 7.
    Rizzo S, Petrella F, Buscarino V, De Maria F, Raimondi S, Barberis M, Fumagalli C, Spitaleri G, Rampinelli C, De Marinis F, Spaggiari L, Bellomi M (2015) CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol 26(1):32–42CrossRefPubMedGoogle Scholar
  8. 8.
    Buettner R, Wolf J, Thomas RK (2013) Lessons learned from lung cancer genomics: the emerging concept of individualized diagnostics and treatment. J Clin Oncol 31(15):1858–1865CrossRefPubMedGoogle Scholar
  9. 9.
    Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27(4):467–480.  https://doi.org/10.1109/TMI.2007.907555 CrossRefPubMedGoogle Scholar
  10. 10.
    De Cecco CN, Ganeshan B, Ciolina M, Rengo M, Meinel FG, Musio D, De Felice F, Raffetto N, Tombolini V, Laghi A (2015) Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol 50(4):239–245CrossRefPubMedGoogle Scholar
  11. 11.
    Sacconi B, Anzidei M, Leonardi A (2017) Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates. Clin Radiol 72(6):443–450CrossRefPubMedGoogle Scholar
  12. 12.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Stiphout RV, Granton P, Zeghers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2011) Radiomics: extracting more information from medical images using advance feature analysis. Eur J Cancer 48(4):441–446CrossRefGoogle Scholar
  13. 13.
    Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24(20):3245–3251CrossRefPubMedGoogle Scholar
  14. 14.
    Janssen MH, Ollers MC, van Stiphout RG, Riedl RG, van den Bogaard J, Buijsen J, Lambin P, Lammering G (2010) Blood glucose level normalization and accurate timing improves the accuracy of PET-based treatment response predictions in rectal cancer. Radiother Oncol 95(2):203–208CrossRefPubMedGoogle Scholar
  15. 15.
    Rubin DL (2008) Creating and curating a terminology for radiology: ontology modeling and analysis. J Digit Imaging 21(4):355–362CrossRefPubMedGoogle Scholar
  16. 16.
    Gonzales RC, Woods RE (2008) Digital image processing. Prentice Hall, Upper Saddle RiverGoogle Scholar
  17. 17.
    Chen CH, Pau LF, Wang PSP (eds) (1998) The handbook of pattern recognition and computer vision, 2nd edn. World Scientific Publishing Co., Singapore, pp 207–248Google Scholar
  18. 18.
    Venuta F, Anile M et al (2010) Thymoma and thymic carcinoma. Review. Eur J Cardio-Thorac Surg 37:13–25CrossRefGoogle Scholar
  19. 19.
    Krishnan K, Ibanez L, Turner WD, Jomier J (2010) Avila RS. An open-source toolkit for the volumetric measurement of CT lung lesions. Opt Express 18(14):15256–15266CrossRefPubMedGoogle Scholar
  20. 20.
    Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Angelo Iannarelli
    • 1
  • Beatrice Sacconi
    • 1
  • Francesca Tomei
    • 1
  • Marco Anile
    • 2
  • Flavia Longo
    • 3
  • Mario Bezzi
    • 1
  • Alessandro Napoli
    • 1
  • Luca Saba
    • 4
  • Michele Anzidei
    • 1
  • Giulia D’Ovidio
    • 1
  • Roberto Scipione
    • 1
  • Carlo Catalano
    • 1
  1. 1.Department of Radiological, Oncological and Anatomopathological Sciences - Radiology“Sapienza” University of RomeRomeItaly
  2. 2.Department of Thoracic Surgery“Sapienza” University of RomeRomeItaly
  3. 3.Department of Radiological, Oncological and Anatomopathological Sciences - Oncology“Sapienza” University of RomeRomeItaly
  4. 4.Department of RadiologyAzienda Ospedaliero Universitaria (A.O.U.), di Cagliari e Polo di MonserratoMonserratoItaly

Personalised recommendations