Evaluation of Food Conservation Technologies for Potato Cubes

  • Paola Ceroli
  • Luz Milagros Garcia Procaccini
  • Graciela Corbino
  • Maria Cristina Monti
  • Marcelo Huarte
Article
  • 5 Downloads

Abstract

Potato cubes of cultivar Innovator were subjected to different food conservation treatments: osmotic dehydration and antioxidants (OD + A), edible coating (E), edible coating with osmotic dehydration and antioxidants (EC + OD + A), immersion in antioxidants (A) and microwave blanching (B). The quality of the products was evaluated by measuring dry matter content, colour, browning index, total phenols and antioxidant capacity and polyphenol oxidase (PPO) activity. Treatments with A resulted in a lower a* colour parameter (red to green) but increased total phenols and antioxidant activity. Those treatments with OD and A together resulted in even larger increases in total phenols and antioxidant activity and also reduced PPO to negligible activity. OD increased dry matter content in OD + A treatments. B increased the browning index (BI) and colour parameters a* and ΔE (total change). As a consequence, potato cubes treated with osmotic dehydration and antioxidants had improved quality characteristics and these treatments are appropriate for minimally processed vegetables.

Keywords

Antioxidant capacity Phenols Polyphenol oxidase activity Potato cubes Processed vegetable 

References

  1. Almeida GC (2005) Qualidade de batatas palito minimamente processadas. Dissertação Mestrado.Universidade Federal de Lavras, Lavras, BrasilGoogle Scholar
  2. Angós I, Vírseda P, Fernández T (2008) Control of respiration and color modification on minimally processed potatoes by means of low and high O2/CO2 atmospheres. Postharvest Biol Technol 48:422–430CrossRefGoogle Scholar
  3. AOAC. Association of Official Agricultural Chemist (1960) Official methods of analysis. Association of Official Agricultural Chemist, Washington 832 ppGoogle Scholar
  4. Barat J, Fito P, Chiralt A (2001) Modelling of simultaneous mass transfer and structural changes in fruits tissue. J Food Eng 49:77–85CrossRefGoogle Scholar
  5. Biswal RN, Bozorgmehr K, Tompkins FD, Liu X (1993) Osmotic concentration of green peas prior to freezing. J Food Sci 56:1008–1012CrossRefGoogle Scholar
  6. Blessington T (2005) The effects of cooking, storage, and ionizing irradiation on carotenoids, antioxidant activity, and phenolics in potatoes (Solanum tuberosum L.). Tesis Master of Science. Texas A&M University, pp 39–42Google Scholar
  7. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30CrossRefGoogle Scholar
  8. Cantos E, Espín JE, Tomás-Barberán FA (2001) Effect of wounding on phenolic enzymes in six minimally processed lettuce cultivars upon storage. J Agric Food Chem 49:322–330CrossRefPubMedGoogle Scholar
  9. Cantos E, Tudela JA, Gil MI, Espín JC (2002) Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J Agric Food Chem 50:3015–3023CrossRefPubMedGoogle Scholar
  10. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  11. Eissa Hesham AA (2007) Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. J Food Qual 30:623–645CrossRefGoogle Scholar
  12. FDA (1994) Sulfiting agents: withdrawal of regulation revoking GRAS status for use on “fresh” potatoes served as sold unpackaged and unlabeled to consumers. U S Food Drug Admin Fed Reg 56:65938–65939Google Scholar
  13. Garcia Martinez P, Martinez-Monzo J, Camacho MM, Martinez-Navarrete N (2002) Characterization of reused osmotic solution as ingredient in new product formulation. Food Res Int 35:307–313CrossRefGoogle Scholar
  14. Garcia Procaccini LM (2013) Utilización de compuestos químicos para mantener la calidad en cortes de papa refrigerados. Tesis de grado. Facultad de Ciencias Agrarias. Universidad Nacional de Mar del Plata. Balcarce, ArgentinaGoogle Scholar
  15. García Procaccini L, Huarte M and Monti MC (2014) Mantenimiento de la calidad de cortes de papa (Solanum tuberosum L.) refrigerados mediante la utilización de compuestos químicos. VII Jornadas Argentinas de Biología y Tecnología Postcosecha. La PlataGoogle Scholar
  16. Giese J (2000) Color measurement in foods as a quality parameter. Food Technol 54:62–65Google Scholar
  17. Gil MI, Gorny JR, Kader AA (1998) Postharvest physiology and quality of ‘Fuji’ apple slices in response to ascorbic acid treatments and low-oxygen atmospheres. Hortscience 33:305–309Google Scholar
  18. Gould GW (1995) In: Gould GW (ed) Overview. New methods of food preservation. Blackie Academic of Professional, LondonCrossRefGoogle Scholar
  19. Infostat. 2008. Software estadisticoGoogle Scholar
  20. Jalaee F, Fazeli A, Fatemian H, Tavakolipour H (2011) Mass transfer coefficient and the characteristics of coated apples in osmotic dehydrating. Food Bioprod Process 89(4):367–374CrossRefGoogle Scholar
  21. Jiang Y, Fu J, Zauberman G, Fuchs Y (1999) Purification of polyphenol oxidase and the browning control of litchi fruit by glutathione and citric acid. J Sci Food Agric 79:950–954CrossRefGoogle Scholar
  22. Kidmose U, Hansen M (1999) The influence of postharvest storage, temperature and duration on the quality of cooked broccoli florets. J Food Qual 22:135–146CrossRefGoogle Scholar
  23. Labuza TP, Lillemo JH, Taoukis PS (1992) Inhibition of polyphenol oxidase by proteolitic enzymes. Fruit Process 2:9–13Google Scholar
  24. Langdon TT (1987) Preventing of browning in fresh prepared potatoes without the use of sulfiting agents. Food Technol 41:64–67Google Scholar
  25. Laurila EK, Ahvenainen RT (1998) Shelf life of sliced raw potatoes of various cultivar varieties—substitution of bisulfites. J Food Prot 64:1363–1371CrossRefGoogle Scholar
  26. Leitsner L (2000) Hurdle technology in the design of minimally processed foods. Minimally processed fruits and vegetables fundamental aspects and applicattions. Alzamora SM, Tapia MS, López Malo A (eds) Gaithersburg, MD, USA, pp 13–27Google Scholar
  27. Leitsner L, Gould GW (2002) Hurdle technologies. In: Combination treatments for food stability, safety and quality. Kluwer Academic. Plenum Publishers, New YorkGoogle Scholar
  28. Limbo S, Piergiovanni L (2006) Shelf life of minimally processed potatoes. Part 1. Effects of high oxygen partial pressures in combination with ascorbic acid and citric acids on enzymatic browning. Postharvest Biol Technol 37:254–264CrossRefGoogle Scholar
  29. Limbo S, Piergiovanni L (2007) Shelf life of minimally processed potatoes. Part 2. Effects of high oxygen partial pressures in combination with ascorbic acid and citric acids on loss of some quality traits. Postharvest Biol Technol 43:221-229Google Scholar
  30. Mallikarjunan P, Chinnan MS, Balasubramaniam VM, Philips RD (1997) Edible coatings for deep-fat frying of starchy products. Lebensm Wiss Technol Food Sci Technol 30:709–714CrossRefGoogle Scholar
  31. Maskan M (2001) Kinetics of color change of kiwi fruits during hot air and microwave drying. J Food Eng 48:169–175CrossRefGoogle Scholar
  32. Millán Trujillo FR, López Plá S, Roa Tavera V, Tapia MS, Cava R (2001) Estudio de la estabilidad microbiologica del melon (Cucumis melo L) minimamente procesado por impregnacion al vacio. Archivos Latinoamericanos de Nutrición. Organo Oficial de la Sociedad Latinoamericana de Nutricion 51:2Google Scholar
  33. Oktay M, Küfreviolglu I, Kocacaliskan I, Sakiroglu H (1995) Polyphenol oxidase from Amasya apple. J Food Sci 60:494–496CrossRefGoogle Scholar
  34. Pizzocaro F, Torreggiani D, Gilardi G (1993) Inhibition of apple polyphenoloxidase by ascorbic acid, citric acid and sodium chloride. J Food Process Preserv 17:21–30CrossRefGoogle Scholar
  35. Reppa A, Mandala J, Kostaropoulos A, Saravacos GD (1999) Influence of solute temperature and concentration on the combined osmotic and air drying. Dry Technol 17:1449–1458CrossRefGoogle Scholar
  36. Rocculi O, Gómez Galindo F, Mendoza F (2007) Effect of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes. Postharvest Biol Technol 43:151–157CrossRefGoogle Scholar
  37. Sapers GM, Hicks KB, Phillips JG, Garzarella L, Pondish DL, Matulaitis RM, McCormack TJ, Sondey SM, Seib PA (1989) Control of enzymatic browning in apple with ascorbic acid derivatives, polyphenol oxidase inhibitors, and complexing agents. J Food Sci 54:997–1002CrossRefGoogle Scholar
  38. Severini C, Baiano A, De Pilli T, Romaniello R, Derossi A (2003) Prevention of enzymatic browning in sliced potatoes by blanching in boiling saline solutions. Lebensm Wisenthal Technol 36:657–665CrossRefGoogle Scholar
  39. Starck JC, Corsini DL, Hurley PJ, Dwelle RB (1985) Biochemical characteristics of potato clones differing in blackspot susceptibility. Am Potato J 62:657–666CrossRefGoogle Scholar
  40. Tapia de Daza MS, Alzamora SM, Welti-Chanes J (1996) Combination of preservation factors applied to minimal processing of foods. Crit Rev Food Sci Nutr 36:629–659CrossRefPubMedGoogle Scholar
  41. Walter JRL (1977) Enzymatic browning in foods, its chemistry and control. Food Technol New Zealand 12:19–25Google Scholar

Copyright information

© European Association for Potato Research 2018

Authors and Affiliations

  • Paola Ceroli
    • 1
  • Luz Milagros Garcia Procaccini
    • 2
  • Graciela Corbino
    • 3
  • Maria Cristina Monti
    • 4
  • Marcelo Huarte
    • 1
  1. 1.Instituto Nacional de Tecnología AgropecuariaBalcarceArgentina
  2. 2.Conicet, Facultad de Ciencias AgrariasUniversidad Nacional de Mar del PlataBuenos AiresArgentina
  3. 3.Instituto Nacional de Tecnología AgropecuariaSan PedroArgentina
  4. 4.Facultad de Ciencias AgrariasUniversidad Nacional de Mar del PlataBuenos AiresArgentina

Personalised recommendations