Advertisement

An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination

  • P. Magal
  • G. F. WebbEmail author
  • Yixiang Wu
Original Paper
  • 11 Downloads

Abstract

We develop a model of honey bee colony collapse based on the contamination of forager bees in environmental regions contaminated with pesticides. An important feature of the model is the daily homing capacity each day of foragers bees. The model consists of difference equations describing the daily homing of uncontaminated and contaminated forager bees, with an increased homing failure of contaminated bees. The model quantifies colony collapse in terms of the fraction of contaminated bees subject to this increased homing failure. If the fraction is sufficiently high, then the hive falls below a viability threshold population size that leads to rapid disintegration. If the fraction is sufficiently low, then the hive can rise above the viability threshold and attain a stable population level.

Keywords

Colony collapse Pesticide contamination Difference equation 

Mathematics Subject Classification

92D25 92D40 

Notes

Acknowledgements

The authors express thanks to Dr. Frederic Barraquand, CNRS, IMB Bordeaux, France, for helpful assistance in the biological background of this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abou-Shaara HF (2014) The foraging behaviour of honey bees, Apis mellifera: a review. Vet Med 59(1):1–10CrossRefGoogle Scholar
  2. American Society for Horticultural Science, U.S. states begin ban on neonicotinoids (2019) https://ashs.org/blogpost/1288786/251171/
  3. Banks HT, Banks JE, Bommarco R et al (2017) Modeling bumble bee population dynamics with delay differential equations. Ecol Model 351:14–23CrossRefGoogle Scholar
  4. Barron AB (2015) Death of the bee hive: understanding the failure of an insect society. Sci Direct 10:45–50Google Scholar
  5. Becher MA, Osborne JL, Thorbek P et al (2013) Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol 50:868–880CrossRefGoogle Scholar
  6. Becher MA, Grimm V, Thorbek P et al (2014) BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J Appl Ecol 51:470–482CrossRefGoogle Scholar
  7. Becher MA, Twiston-Davies G, Penny TD (2018) Bumble-BEEHAVE: a systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level. J Appl Ecol 55:2797–2801CrossRefGoogle Scholar
  8. Bee Informed Partnership, Total US managed honey bee colonies loss estimates (2018) https://beeinformd.org
  9. Bernardi S, Venturino E (2016) Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite. Sci Direct 5:e00101 Google Scholar
  10. Betti MI, Wahl LM, Zamir M (2014) Effects of infection on honey bee population dynamics: a model. PLoS ONE 9(10):e110237CrossRefGoogle Scholar
  11. Betti M, LeClair J, Wahl LM et al (2017) Bee++: an object-oriented, agent-based simulator for honeybee colonies. Pop Sci 8:31 Google Scholar
  12. Blacquiére T, Smagghe G, van Gestel CAM et al (2016) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21(4):973–992CrossRefGoogle Scholar
  13. Booten RD, Iwasa Y, Marshall JAR et al (2017) Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies. J Theor Biol 420:213–219MathSciNetCrossRefzbMATHGoogle Scholar
  14. Bryden J, Gill RJ, Mitton RAA et al (2013) Chronic sublethal stress causes bee colony failure. Ecol. Lett 16:1463–1469CrossRefGoogle Scholar
  15. Chauzat M-P, Carpentier P, Martel A-C et al (2009) Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ Entomol 38(3):514–543CrossRefGoogle Scholar
  16. Cutler GC, Scott-Dupree CD (2007) Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J Econ Entomol 100(3):765–772CrossRefGoogle Scholar
  17. Cutler GC, Scott-Dupree CD, Sultan M et al (2014) A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success. Peer J 2:e652CrossRefGoogle Scholar
  18. Cutler GC, Scott-Dupree CD (2016) A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology 23(9):1755–1763CrossRefGoogle Scholar
  19. DeGrandi-Hoffman G, Roth SA, Loper GL, Erickson EH (1989) BEEPOP: a honeybee population dynamics simulation model. Ecol Model 45:133–150CrossRefGoogle Scholar
  20. DeGrandi-Hoffman G, Curry R et al (2004) A mathematical model of Varroa mite (Varroa destructor Anderson and Trueman) and honeybee Apis mellifera L. population dynamics. Int J Acarol 30(3):259–274CrossRefGoogle Scholar
  21. Dennis B, Kemp WP (2016) How hives collapse: Allee effects, ecological resilience, and the honey bee. PLoS ONE 11(2):e0150055CrossRefGoogle Scholar
  22. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  23. Dively GP, Embrey MS, Kamel A et al (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE 10:e0118748CrossRefGoogle Scholar
  24. Dukas R (2008) Mortality rates of honey bees in the wild. Insectes Sociaux 55(3):252–255CrossRefGoogle Scholar
  25. European Food Safety Authority, Neonicotinoids: risks to bees confirmed (2018)  https://doi.org/10.2903/sp.efsa.2018.EN-1378
  26. European Food Safety Authority, Evaluation of the data on clothianidin, imidacloprid and thiamethoxam for the updated risk assessment to bees for seed treatments and granules in the EU (2018)  https://doi.org/10.2903/sp.efsa.2018.EN-1378
  27. Farley JD (2017) Evolutionary dynamics of bee colony collapse disorder: steps toward a mathematical model of the contagion hypothesis. J Adv Agric 7(2):1050–1056 CrossRefGoogle Scholar
  28. Gabbriellini G (2017) Seasonal effects on honey bee population dynamics: a nonautonomous system of difference equations. Int J Differ Equ 12(2):211–233MathSciNetGoogle Scholar
  29. Goulson D, Nicholls E, Botas C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957CrossRefGoogle Scholar
  30. H.R. 3040-Saving America’s Pollinators Act of 2017 (2018) https://www.congress.gov/bill /115th-congress/house-bill/3040/text
  31. Henry M, Béguin M, Requier F et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079):348–350CrossRefGoogle Scholar
  32. Henry M, Cerrutti N, Aupinel P et al (2015) Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proc R Soc B Sci 282:20152110CrossRefGoogle Scholar
  33. Huang ZY, Robinson GE (1974) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39:147–158CrossRefGoogle Scholar
  34. Kang Y, Theraulaz G (2016) Dynamical models of task organization in social insect colonies. Bull Math Biol 78(5):879–915MathSciNetCrossRefzbMATHGoogle Scholar
  35. Kang Y, Blanco K, Davis T, Wang Y, DeGrandi-Hoffman G (2016) Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math Biosci 275:71–92MathSciNetCrossRefzbMATHGoogle Scholar
  36. Khoury DS, Myerscough MR, Barron AB (2011) A quantitative model of honey bee colony population dynamics. PLoS ONE 6(4):e18491CrossRefGoogle Scholar
  37. Kribs-Zaleta CM, Mitchell C (2014) Modeling colony collapse disorder in honeybees as a contagion. Math Biosci Eng 11(6):1275–1294MathSciNetCrossRefzbMATHGoogle Scholar
  38. Leoncini I, Le Conte Y, Costagliola G et al (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc Nat Acad Sci 101:17559–17564CrossRefGoogle Scholar
  39. Martin SJ (2002) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modeling approach. J Appl Ecol 38:1082–1093CrossRefGoogle Scholar
  40. Meikle WG, Adamczyk JJ, Weiss M et al (2016) Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the US. PLoS ONE 11:e0168603CrossRefGoogle Scholar
  41. Myerscough MR, Khoury DS, Ronzani S, Barron AB (2017) Why do hives die? Using mathematics to solve the problem of honey bee colony collapse. In: Anderssen B et al (eds) The role and importance of mathematics in innovation. Mathematics for industry, vol 25. Springer, SingaporeGoogle Scholar
  42. Nguyen BK, Saegerman C, Picard C et al (2009) Does imidacloprid seed-treated maize have an impact on honey bee mortality? J Econ Entomol 102(2):616–623CrossRefGoogle Scholar
  43. Pilling E, Cambell E, Coulson M et al (2013) A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS ONE 8:e77193CrossRefGoogle Scholar
  44. Ratti V, Kevan PG, Eberl HJ (2013) A mathematical model for population dynamics in honeybee colonies infested with Varroa destructor and the acute bee paralysis virus. Can Appl Math Q 21(1):63–93MathSciNetzbMATHGoogle Scholar
  45. Ratti V, Kevan PG, Eberl HJ (2015) A mathematical model of the honeybee-Varroa destructor-Acute bee paralysis virus system with seasonal effects. Bull Math Biol 77(8):1493–1520MathSciNetCrossRefzbMATHGoogle Scholar
  46. Ratti V, Kevan PG, Eberl HJ (2017) A mathematical model of forager loss in honeybee colonies infested with Varroa destructor and the acute bee paralysis virus. Bull Math Biol 79(6):1218–1253MathSciNetCrossRefzbMATHGoogle Scholar
  47. Rolke D, Fuchs S, Grunewald B et al (2016) Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). Ecotoxicology 25(9):1648–1665CrossRefGoogle Scholar
  48. Rundlof M, Andersson GKS, Bommarco R et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80CrossRefGoogle Scholar
  49. Russell S, Barron AB, Harris D (2013) Dynamic modelling of honey bee (Apis mellifera) colony growth and failure. Ecol Model 265(10):158–169CrossRefGoogle Scholar
  50. Sandrock C, Tanadini LG, Pettis JS et al (2014) Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric For Entomol 16:119–128CrossRefGoogle Scholar
  51. Schmickl T, Crailsheim K (2007) HoPoMo: a model of honeybee intracolonial population dynamics and resource management. Ecol Model 204:219–245CrossRefGoogle Scholar
  52. Schneider CW, Tautz J, Grünewald B et al (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7(1):e30023CrossRefGoogle Scholar
  53. Stanley DA, Russell AL, Morrison SJ et al (2016) Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J Appl Ecol 53:1440–1449CrossRefGoogle Scholar
  54. Sumpter DJ, Martin SJ (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies. J Animal Ecol 73(1):51–63CrossRefGoogle Scholar
  55. Thompson HM, Wilkins S, Harkin S et al (2015) Neonicotinoids and bumblebees (Bombus terrestris): effects on nectar consumption in individual workers. Pest Manag Sci 71(7):946–950CrossRefGoogle Scholar
  56. Torres DJ, Ricoy UM, Roybal S (2015) Modeling honey bee populations. PLoS ONE 10(7):e0130966CrossRefGoogle Scholar
  57. Truitt LL, McArt SH, Vaughn AH, Ellner SP (2019) Trait-based modeling of multihost pathogen transmission: plant-pollinator networks. Am Nat 193(6):E149–E167CrossRefGoogle Scholar
  58. United States Department of Agriculture Agricultural Research Service (2019) https://www.ars.usda.gov/oc/br/ccd/index/
  59. United States Environmental Protection Agency, Schedule for Review of Neonicotinoid Pesticides (2019) https://www.epa.gov/pollinator-protection/schedule-review-neonicotinoid-pesticides
  60. vanEngelsdorp D, Evans JD, Saegerman C et al (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4(8):e6481CrossRefGoogle Scholar
  61. Willkinson D, Smith GC (2002) A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecol Model 148:263–275CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Université de BordeauxBordeauxFrance
  2. 2.Vanderbilt UniversityNashvilleUSA

Personalised recommendations