Advertisement

Modeling Public Health Campaigns for Sexually Transmitted Infections via Optimal and Feedback Control

  • Ariel CamachoEmail author
  • Fernando Saldaña
  • Ignacio Barradas
  • Silvia Jerez
Original Article

Abstract

Control of sexually transmitted infections (STIs) poses important challenges to public health authorities. Obstacles for STIs’ control include low priority in public health programs and disease transmission mechanisms. This work uses a compartmental pair model to explore different public health strategies on the evolution of STIs. Optimal control and feedback control are used to model realistic strategies for reducing the prevalence of these infections. Feedback control is proposed to model the reaction of public health authorities relative to an alert level. Optimal control is used to model the optimization of available resources for implementing strategies. Numerical simulations are performed using trichomoniasis, gonorrhea, chlamydia and human papillomavirus (HPV) as study cases. HPV is non-curable, and it is analyzed only under transmission control such as condom promotion campaigns. Trichomoniasis, gonorrhea and chlamydia are curable STIs that are modeled here additionally under treatment control. Increased cost-effectiveness ratio is employed as a criterion to measure control strategies performance. The features and drawbacks of control strategies under the pair formation process are discussed.

Keywords

Pair model Optimal control Feedback control Sexually transmitted infections 

Notes

Acknowledgements

We appreciate the invaluable feedback from the anonymous reviewers that improved this work. AC and FS acknowledge Mexico CONACyT for the Graduate Fellowship Grants 412803 and 331194, respectively. This work was partially supported by Mexico CONACyT Project CB2016-286437. Finally, we also express our gratitude to Dr. Janet Mary Izzo for revising the manuscript.

Code availability

The MATLAB and Python codes used to run the simulations in this work may be found in https://github.com/arielcam27/STIs_pairModel_control

Supplementary material

11538_2019_642_MOESM1_ESM.pdf (3.9 mb)
Supplementary material 1 (pdf 4016 KB)

References

  1. Agusto FB, ELmojtaba IM (2017) Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection. PLoS ONE 12(2):e0171102.  https://doi.org/10.1371/journal.pone.0171102 Google Scholar
  2. Berhe HW, Makinde OD, Theuri DM (2018) Optimal control and cost-effectiveness analysis for dysentery epidemic model. Appl Math Inf Sci 12(6):1183–1195.  https://doi.org/10.18576/amis/120613 MathSciNetGoogle Scholar
  3. Brauer F, Castillo-Chavez C (2012) Mathematical models in population biology and epidemiology. Springer, New YorkzbMATHGoogle Scholar
  4. Camacho A, Jerez S (2019) Bone metastasis treatment modeling via optimal control. J Math Biol 78(1–2):497–526.  https://doi.org/10.1007/s00285-018-1281-3 MathSciNetzbMATHGoogle Scholar
  5. Cape JD, Beca JM, Hoch JS (2013) Introduction to cost-effectiveness analysis for clinicians. Univ Tor Med J 90(3):103–105Google Scholar
  6. CDC (2013) Incidence, prevalence, and cost of sexually transmitted infections in the United States. http://www.cdc.gov/std/stats/sti-estimates-fact-sheet-feb-2013.pdf. Accessed 12 Dec 2018
  7. Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, BerlinzbMATHGoogle Scholar
  8. Gaff H, Schaefer E (2009) Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math Biosci Eng 6(3):469–492.  https://doi.org/10.3934/mbe.2009.6.469 MathSciNetzbMATHGoogle Scholar
  9. Gerbase AC, Rowley JT, Mertens TE (1998) Global epidemiology of sexually transmitted diseases. Lancet 351:S2–S4.  https://doi.org/10.1016/S0140-6736(98)90001-0 Google Scholar
  10. Gumel AB, Lubuma JM-S, Sharomi O, Terefe YA (2018) Mathematics of a sexstructured model for syphilis transmission dynamics. Math Methods Appl Sci 41(18):8488–8513.  https://doi.org/10.1002/mma.4734 MathSciNetzbMATHGoogle Scholar
  11. Heijne JC, Althaus CL, Herzog SA, Kretzschmar M, Low N (2011) The role of reinfection and partner notification in the efficacy of Chlamydia screening programs. J Infect Dis 203(3):372–377.  https://doi.org/10.1093/infdis/jiq050 Google Scholar
  12. Heijne JC, Herzog SA, Althaus CL, Low N, Kretzschmar M (2013) Case and partnership reproduction numbers for a curable sexually transmitted infection. J Theor Biol 331:38–47.  https://doi.org/10.1016/j.jtbi.2013.04.010 MathSciNetzbMATHGoogle Scholar
  13. Johnson LF, Geffen N (2016) A comparison of two mathematical modeling frameworks for evaluating sexually transmitted infection epidemiology. Sex Transm Dis 43(3):139–146.  https://doi.org/10.1097/OLQ.0000000000000412 Google Scholar
  14. Johnson AM, Mercer CH, Erens B, Copas AJ, McManus S, Wellings K, Purdon S (2001) Sexual behaviour in Britain: partnerships, practices, and HIV risk behaviours. Lancet 358(9296):1835–1842.  https://doi.org/10.1016/S0140-6736(01)06883-0 Google Scholar
  15. Juckett G, Hartman-Adams H (2010) Human papillomavirus: clinical manifestations and prevention. Am Fam Physician 82(10):1209–1213Google Scholar
  16. Kretzschmar M, Dietz K (1998) The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math Biosci 148(1):83–113.  https://doi.org/10.1016/S0025-5564(97)10008-6 zbMATHGoogle Scholar
  17. Kretzschmar M, Heijne JC (2017) Pair formation models for sexually transmitted infections: a primer. Infect Dis Model 2(3):368–378.  https://doi.org/10.1016/j.idm.2017.07.002 Google Scholar
  18. Lenhart S, Workman JT (2007) Optimal control applied to biological models. CRC Press, Boca RatonzbMATHGoogle Scholar
  19. Malik T, Imran M, Jayaraman R (2016) Optimal control with multiple human papillomavirus vaccines. J Theor Biol 393:179–193.  https://doi.org/10.1016/j.jtbi.2016.01.004 zbMATHGoogle Scholar
  20. Milwid RM, Frascoli F, Steben M, Heffernan JM (2018) HPV screening and vaccination strategies in an unscreened population: a mathematical modeling study. Bull Math Biol.  https://doi.org/10.1007/s11538-018-0425-3 Google Scholar
  21. Momoh AA, Fügenschuh A (2018) Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper Res Health Care 18:99–111.  https://doi.org/10.1016/j.orhc.2017.08.004 Google Scholar
  22. Muller H, Bauch C (2010) When do sexual partnerships need to be accounted for in transmission models of human papillomavirus? Int J Environ Res Public Health 7(2):635–650.  https://doi.org/10.3390/ijerph7020635 Google Scholar
  23. Nandi SK, Jana S, Mandal M, Kar TK (2018) Mathematical analysis of an epidemic system in the presence of optimal control and population dispersal. Biophys Rev Lett 13(01):1–17.  https://doi.org/10.1142/S1793048018500017 Google Scholar
  24. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Temmerman M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10(12):e0143304.  https://doi.org/10.1371/journal.pone.0143304 Google Scholar
  25. Okosun KO, Ouifki R, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106(2–3):136–145.  https://doi.org/10.1016/j.biosystems.2011.07.006 Google Scholar
  26. Otieno G, Koske J, Mutiso J (2016) Cost effectiveness analysis of optimal malaria control strategies in Kenya. Mathematics 4(1):14.  https://doi.org/10.3390/math4010014 zbMATHGoogle Scholar
  27. Owusu-Edusei K Jr, Chesson HW, Gift TL, Tao G, Mahajan R, Ocfemia MCB, Kent CK (2013) The estimated direct medical cost of selected sexually transmitted infections in the United States. Sex Transm Dis 40(3):197–201.  https://doi.org/10.1097/OLQ.0b013e318285c6d2 Google Scholar
  28. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1965) The mathematical theory of optimal processes. Interscience, GenevazbMATHGoogle Scholar
  29. Rodrigues HS, Monteiro MTT, Torres DFM (2014a) Vaccination models and optimal control strategies to dengue. Math Biosci 247:1–12.  https://doi.org/10.1016/j.mbs.2013.10.006 MathSciNetzbMATHGoogle Scholar
  30. Rodrigues P, Silva CJ, Torres DFM (2014b) Cost-effectiveness analysis of optimal control measures for tuberculosis. Bull Math Biol 76(10):2627–2645.  https://doi.org/10.1007/s11538-014-0028-6 MathSciNetzbMATHGoogle Scholar
  31. Saldaña F, Barradas I (2019) The role of behavioral changes and prompt treatment in the control of STIs. Infect Dis Model 4:1–10.  https://doi.org/10.1016/j.idm.2018.12.001 Google Scholar
  32. Sepulveda LS, Vasilieva O (2016) Optimal control approach to dengue reduction and prevention in Cali, Colombia. Math Meth Appl Sci 39(18):5475–5496.  https://doi.org/10.1002/mma.3932 MathSciNetzbMATHGoogle Scholar
  33. Sharomi O, Malik T (2017) Optimal control in epidemiology. Ann Oper Res 251(1–2):55–71.  https://doi.org/10.1007/s10479-015-1834-4 MathSciNetzbMATHGoogle Scholar
  34. Tilahun GT, Makinde OD, Malonza D (2018) Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis. Appl Math Comput 316:438–459.  https://doi.org/10.1016/j.amc.2017.07.063 MathSciNetzbMATHGoogle Scholar
  35. Unemo M, Bradshaw CS, Hocking JS, de Vries HJ, Francis SC, Mabey D, Peeling RW (2017) Sexually transmitted infections: challenges ahead. Lancet Infect Dis 17(8):e235–e279.  https://doi.org/10.1016/S1473-3099(17)30310-9 Google Scholar
  36. Villavicencio Pulido G, Barradas I, Luna B (2017) Backward bifurcation for some general recovery functions. Math Methods Appl Sci 40(5):1505–1515.  https://doi.org/10.1002/mma.4074 MathSciNetzbMATHGoogle Scholar
  37. Wang W (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201(1–2):58–71.  https://doi.org/10.1016/j.mbs.2005.12.022 MathSciNetzbMATHGoogle Scholar
  38. World Health Organization (2012) Global incidence and prevalence of selected curable sexually transmitted infections-2008. World Health Organization, GenevaGoogle Scholar
  39. Zhang X, Liu X (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348(1):433–443.  https://doi.org/10.1016/j.jmaa.2008.07.042 MathSciNetzbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Centro de Investigación en MatemáticasGuanajuatoMexico

Personalised recommendations