Advertisement

Multi-type Galton–Watson Processes with Affinity-Dependent Selection Applied to Antibody Affinity Maturation

  • Irene Balelli
  • Vuk Milišić
  • Gilles Wainrib
Article
  • 1 Downloads

Abstract

We analyze the interactions between division, mutation and selection in a simplified evolutionary model, assuming that the population observed can be classified into fitness levels. The construction of our mathematical framework is motivated by the modeling of antibody affinity maturation of B-cells in germinal centers during an immune response. This is a key process in adaptive immunity leading to the production of high-affinity antibodies against a presented antigen. Our aim is to understand how the different biological parameters affect the system’s functionality. We identify the existence of an optimal value of the selection rate, able to maximize the number of selected B-cells for a given generation.

Keywords

Multi-type Galton–Watson process Germinal center reaction Affinity-dependent selection Evolutionary landscapes 

Mathematics Subject Classification

60J85 60J80 92B99 92D15 

Notes

Acknowledgements

This work was supported by the Labex inflamex, ANR Project 10-LABX-0017.

References

  1. Anderson SM, Khalil A, Uduman M, Hershberg U, Louzoun Y, Haberman AM, Kleinstein SH, Shlomchik MJ (2009) Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. J Immunol 183(11):7314–7325CrossRefGoogle Scholar
  2. Ansari HR, Raghava GP (2010) Identification of conformational B-cell epitopes in an antigen from its primary sequence. Immunome Res 6(1):1CrossRefGoogle Scholar
  3. Athreya KB, Ney PE (2012) Branching processes, vol 196. Springer Science & Business Media, New YorkzbMATHGoogle Scholar
  4. Balelli I, Milišić V, Wainrib G (2018) Random walks on binary strings applied to the somatic hypermutation of B-cells. Math Biosci 300:168–186MathSciNetCrossRefzbMATHGoogle Scholar
  5. Balelli I, Milisic V, Wainrib G (2016) Branching random walks on binary strings for evolutionary processes in adaptive immunity. arXiv preprint arXiv:1607.00927
  6. Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG (2013) Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39(5):912–924CrossRefGoogle Scholar
  7. Castro LND, Zuben FJV (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251CrossRefGoogle Scholar
  8. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352(8):804–815CrossRefGoogle Scholar
  9. Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44(5):1172–1239CrossRefGoogle Scholar
  10. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148CrossRefGoogle Scholar
  11. Dighiero G, Hamblin T (2008) Chronic lymphocytic leukaemia. Lancet 371(9617):1017–1029CrossRefGoogle Scholar
  12. Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, Hallek M, Buske C (2015) Chronic lymphocytic leukaemia: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26((suppl 5)):v78–v84CrossRefGoogle Scholar
  13. Gitlin AD, Shulman Z, Nussenzweig MC (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509(7502):637–640CrossRefGoogle Scholar
  14. Harris TE (1963) The theory of branching processes. Springer, New YorkCrossRefzbMATHGoogle Scholar
  15. Iber D, Maini PK (2002) A mathematical model for germinal centre kinetics and affinity maturation. J Theoret Biol 219(2):153–175MathSciNetCrossRefGoogle Scholar
  16. Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T (2018) Generation of memory B cells and their reactivation. Immunol Rev 283(1):138–149CrossRefGoogle Scholar
  17. Kauffman SA, Weinberger ED (1989) The NK model of rugged fitness landscapes and its application to maturation of the immune response. J Theoret Biol 141(2):211–245CrossRefGoogle Scholar
  18. Keşmir C, De Boer RJ (1999) A mathematical model on germinal center kinetics and termination. J Immunol 163(5):2463–2469Google Scholar
  19. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829CrossRefGoogle Scholar
  20. MacLennan IC, de Vinuesa CG, Casamayor-Palleja M (2000) B-cell memory and the persistence of antibody responses. Philos Trans R Soc Lond B Biol Sci 355(1395):345–350CrossRefGoogle Scholar
  21. Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of B cell selection mechanisms in germinal centers. Math Med Biol 23(3):255–277CrossRefzbMATHGoogle Scholar
  22. Meyer-Hermann M, Mohr E, Pelletier N, Zhang Y, Victora GD, Toellner KM (2012) A theory of germinal center B cell selection, division, and exit. Cell Rep 2(1):162–174CrossRefGoogle Scholar
  23. Minc H (1988) Nonnegative matrices. John Wiley & Sons, New YorkGoogle Scholar
  24. Mitchell R, Kelly DF, Pollard AJ, Trück J (2014) Polysaccharide-specific B cell responses to vaccination in humans. Hum Vaccines Immunother 10(6):1661–1668CrossRefGoogle Scholar
  25. Moreira JS, Faro J (2006) Modelling two possible mechanisms for the regulation of the germinal center dynamics. J Immunol 177(6):3705–3710CrossRefGoogle Scholar
  26. Murphy KM, Travers P, Walport M et al (2012) Janeway’s immunobiology, vol 7. Garland Science, New YorkGoogle Scholar
  27. Pang W, Wang K, Wang Y, Ou G, Li H, Huang L (2015) Clonal selection algorithm for solving permutation optimisation problems: a case study of travelling salesman problem. In: International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015). Atlantis PressGoogle Scholar
  28. Perelson AS, Oster GF (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J Theor Biol 81(4):645–670MathSciNetCrossRefGoogle Scholar
  29. Perelson AS, Weisbuch G (1997) Immunology for physicists. Rev Mod Phys 69(4):1219–1267CrossRefGoogle Scholar
  30. Phan TG, Paus D, Chan TD, Turner ML, Nutt SL, Basten A, Brink R (2006) High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med 203(11):2419–2424CrossRefGoogle Scholar
  31. Shannon M, Mehr R (1999) Reconciling repertoire shift with affinity maturation: the role of deleterious mutations. J Immunol 162(7):3950–3956Google Scholar
  32. Shen WJ, Wong HS, Xiao QW, Guo X, Smale S (2012) Towards a mathematical foundation of immunology and amino acid chains. arXiv preprint arXiv:1205.6031
  33. Shlomchik MJ, Watts P, Weigert MG, Litwin S (1998) Clone: a Monte-Carlo computer simulation of B cell clonal expansion, somatic mutation, and antigen-driven selection. In: Kelsoe G, Flajnik MF (eds) Somatic diversification of immune responses. Springer, Berlin, Heidelberg, pp 173–197CrossRefGoogle Scholar
  34. Tas JM, Mesin L, Pasqual G, Targ S, Jacobsen JT, Mano YM, Chen CS, Weill JC, Reynaud CA, Browne EP et al (2016) Visualizing antibody affinity maturation in germinal centers. Science 351(6277):1048–1054CrossRefGoogle Scholar
  35. Timmis J, Hone A, Stibor T, Clark E (2008) Theoretical advances in artificial immune systems. Theor Comput Sci 403(1):11–32MathSciNetCrossRefzbMATHGoogle Scholar
  36. Victora GD (2014) Snapshot: the germinal center reaction. Cell 159(3):700–700CrossRefGoogle Scholar
  37. Victora GD, Mesin L (2014) Clonal and cellular dynamics in germinal centers. Curr Opin Immunol 28:90–96CrossRefGoogle Scholar
  38. Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457CrossRefGoogle Scholar
  39. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143(4):592–605CrossRefGoogle Scholar
  40. Wang P, Shih CM, Qi H, Lan YH (2016) A stochastic model of the germinal center integrating local antigen competition, individualistic T-B interactions, and B cell receptor signaling. J Immunol 197:1169–1182CrossRefGoogle Scholar
  41. Weiser AA, Wittenbrink N, Zhang L, Schmelzer AI, Valai A, Or-Guil M (2011) Affinity maturation of B cells involves not only a few but a whole spectrum of relevant mutations. Int Immunol 23(5):345–356CrossRefGoogle Scholar
  42. Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG, Faro J, Graca L (2011) Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol 187(9):4553–4560CrossRefGoogle Scholar
  43. Xu H, Schmidt AG, O’Donnell T, Therkelsen MD, Kepler TB, Moody MA, Haynes BF, Liao HX, Harrison SC, Shaw DE (2015) Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins Struct Funct Bioinf 83(4):771–780CrossRefGoogle Scholar
  44. Yaari G, Uduman M, Kleinstein SH (2012) Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res 40(17):e134–e134CrossRefGoogle Scholar
  45. Zhang J, Shakhnovich ET (2010) Optimality of mutation and selection in germinal centers. PLoS Comput Biol 6(6):e1000800MathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  1. 1.Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), laboratoire d’excellence InflamexUniversité Paris 13VilletaneuseFrance
  2. 2.Centre INSERM U1219, and INRIA - Statistics in System Biology and Translational Medicine TeamBordeaux UniversityBordeauxFrance
  3. 3.Département d’InformatiqueEcole Normale SupérieureParisFrance
  4. 4.Owkin, Inc.New YorkUSA

Personalised recommendations