Advertisement

Dynamics of Notch Activity in a Model of Interacting Signaling Pathways

Abstract

Networks of interacting signaling pathways are formulated with systems of reaction-diffusion (RD) equations. We show that weak interactions between signaling pathways have negligible effects on formation of spatial patterns of signaling molecules. In particular, a weak interaction between Retinoic Acid (RA) and Notch signaling pathways does not change dynamics of Notch activity in the spatial domain. Conversely, large interactions of signaling pathways can influence effects of each signaling pathway. When the RD system is largely perturbed by RA-Notch interactions, new spatial patterns of Notch activity are obtained. Moreover, analysis of the perturbed Homogeneous System (HS) indicates that the system admits bifurcating periodic orbits near a Hopf bifurcation point. Starting from a neighborhood of the Hopf bifurcation, oscillatory standing waves of Notch activity are numerically observed. This is of particular interest since recent laboratory experiments confirm oscillatory dynamics of Notch activity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

  1. Abed, E.H., 1988. A simple proof of stability on the center manifold for Hopf bifurcation. SIAM Rev. 30(3), 487–491.

  2. Al-Omari, J.F.M., Gourley, S.A., 2003. Stability and traveling fronts in Lotka-Volterra competition models with stage structure. SIAM J. Appl. Math. 63, 2063–2086.

  3. Andersen, S.S., Bi, G., 2000. Axon formation: a molecular model for the generation of neuronal polarity. BioEssays 22, 172–179.

  4. Aragon, J.L., Torres, M., Gil, D., Barrio, R.A., Maini, P.K., 2002. Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913.

  5. Arnold, V.I., 1973. Ordinary Differential Equations. MIT Press, Cambridge.

  6. Aulehla, A., Pourquié, O., 2008. Oscillating signaling pathways during embryonic development. Curr. Opin. Cell Biol. 20(6), 632–637.

  7. Bani-Yaghoub, M., Amundsen, D.E., 2006. Turing-type instabilities in a mathematical model of Notch and Retinoic Acid pathways. WSEAS Trans. Biol. Biomed. 3(2), 89–96.

  8. Bani-Yaghoub, M., Amundsen, D.E., 2008. Study and simulation of reaction-diffusion systems affected by interacting signaling pathways. Acta Biotheoretica 56(4), 315–328.

  9. Barrio, R.A., Varea, C., Aragon, J.L., 1999. A two-dimensional numerical study of spatial pattern formation in interacting systems. Bull. Math. Biol. 61, 483–505.

  10. Benson, D.L., Maini, P.K., Sherratt, J.A., 1998. Unravelling the Turing bifurcation using spatially varying diffusion coefficients. J. Math. Biol. 37, 381–417.

  11. Blokzijl, A., Dahlqvist, C., Reissmann, E., et al., 2003. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163(4), 723–728.

  12. Carr, J., 1981. Application of Center Manifold Theory. Springer, New York.

  13. Clagett-Dame, M., McNeill, E.M., Muley, P.D., 2006. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J. Neurobiol. 66(7), 739–756.

  14. Collier, J.R., Monk, N.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signaling. J. Theor. Biol. 183, 429–446.

  15. Cummings, F.W., 2000. A model of pattern formation based on Signaling pathway. J. Theor. Biol. 207, 107–116.

  16. Cummings, F.W., 2004. A model of morphogenesis. Physica A 339, 531–547.

  17. de Joussineau, C., Soule, J., Martin, M., et al., 2003. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559.

  18. de Strooper, B., Annaert, W., 2001. Where Notch and Wnt signaling meet: The presenilin hub. J. Cell Biol. 152(4), F17–F20.

  19. Drazin, P.G., 1992. Nonlinear Systems. Cambridge University Press, Cambridge.

  20. Eisner, J., Kucera, M., 2000. Bifurcation of Solutions to Reaction–Diffusion Systems with Jumping Nonlinearities, book chapter, Applied Nonlinear Analysis, Springer US.

  21. Ermentrout, G.B., 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413–417.

  22. Franklin, J.L., Berechid, B.E., Cutting, F.B., et al., 1999. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 9, 1448–1457.

  23. Faria, T., Huang, W., Wu, J., 2006. Traveling waves for delayed reaction–diffusion equations with global response. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 462(2065), 229–261.

  24. Golubitsky, M., Knobloch, E., Stewart, I., 2000. Target patterns and spirals in planar reaction–diffusion systems. J. Nonlinear Sci. 10, 333–354.

  25. Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York.

  26. Hagan, P.S., 1981. Target patterns in reaction–diffusion systems. Adv. Appl. Math. 2, 400–416.

  27. Hall, J.M., 1981. On the solution of reaction–diffusion equations. IMA J. Appl. Math. 272, 177–194.

  28. Hartman, P., 1964. Ordinary Differential Equations. Wiley, New York.

  29. Hopf, E., 1942. Abzweigung einer periodischen Loesung von einer stationaeren Loesung eines Differential systems. Ber. Math.-Phys. Kl. Saechs Adad Wiss. Leipz. 94, 1.

  30. Hunter, K., Maden, M., Summerbell, D., et al., 1991. Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Proc. Natl. Acad. Sci. 88, 3666–3670.

  31. Jost, J., 2007. Theorem 5.2.1 in Partial Differential Equations, 2nd edn. Springer, New York.

  32. Jun, T., Gjoerup, O., Roberts, T., 1999. Tangled webs: evidence of cross-talk between c-Raf-1 and Akt. Sci. STKE. doi:10.1126/stke.1999.13.pe1.

  33. Kageyama, R., Masamizu, Y., Niwa, Y., 2008. Oscillator mechanism of notch pathway in the segmentation clock. Dev. Dyn. 236(6), 1403–1409.

  34. Kopell, N., Howard, L.N., 1973. Plane wave solutions to reaction–diffusion equations. Stud. Appl. Math. 42, 291–328.

  35. Larrson, S., Thomee, V., 2003. Partial Differential Equations with Numerical Methods. Springer, Berlin.

  36. McLean, D.R., van Ooyen, A., Graham, B.P., 2004. Continuum model for tubulin-driven neurite elongation. Neurocomput. 58–60, 511–516.

  37. Murray, J.D., 2003a. Mathematical Biology I. Springer, New York.

  38. Murray, J.D., 2003b. Mathematical Biology II. Springer, New York.

  39. Nagao, M., Sugimori, M., Nakafuku, M., 2007. Cross Talk between Notch and Growth Factor/Cytokine signaling pathways in neural stem cells. Mol. Cell. Biol. 27(11), 3982–3994.

  40. Nagorcka, B.N., Mooney, J.R., 1992. From stripes to spots: prepatterns which can be produced in the skin by reaction–diffusion systems. IMA J. Math. Appl. Med. Biol. 9, 249–267.

  41. Napoli, J.L., 1996. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin. Immunol. Immunopathol. 80(3), S52–S62.

  42. Needham, D.J., 1992. A formal theory concerning the generation and propagation of traveling wave-fronts in reaction diffusion equations. Q. J. Mech. Appl. Math. 45(3), 469–498.

  43. Ockendon, J., Howison, S., Lacey, A., Movchan, A., 2003. Applied Partial Differential Equations, revised edn., pp. 271–287. Oxford University Press, London.

  44. Ouchi, N., Kobayashi, H., Kihara, S., et al., 2004. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279(2), 1304–1309.

  45. Perko, L., 2001. Differential Equations and Dynamical Systems, 3rd edn. Springer, New York.

  46. Rauch, E.M., Millonas, M.M., 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401–407.

  47. Ruelle, D., Takens, F., 1971. On the nature of turbulence. Commun. Math. Phys. 20, 167.

  48. Sakamoto, K., Suzuki, H., 2004. Spherically symmetric internal layers for activator-inhibitor systems: I. Existence by a Lyapunov-Schmidt reduction. J. Differ. Equ. 204, 56–92.

  49. Scheel, A., 1998. Bifurcation to spiral waves in reaction-diffusion systems. SIAM J. Math. Anal. Arch. 29(6), 1399–1418.

  50. Shimojo, H., Ohtsuka, T., Kageyama, R., 2008. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58(1), 52–64.

  51. Sternberg, P.W., 1993. Falling off the knife edge. Curr. Biol. 3, 763–765.

  52. Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B 237, 37–72.

  53. Webb, S.D., Owen, M.R., 2004. Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning. J. Theor. Biol. 230, 99–117.

  54. Yang, Y.L., Liao, J.C., 2005. Determination of functional interactions among signaling pathways in Escherichia coli K-12. Metab. Eng. 7(4), 280–290.

  55. Zhabotinsky, A.M., Zaikin, A.N., 1971. In: Sel’kov, E.E. (Ed.), Oscillating Processes in Biological and Chemical Systems II, p. 279. Nauka, Puschino.

  56. Zhu, M., Murray, J.D., 1995. Parameter domains for generating spatial patterns: a comparison of reaction-diffusion and cell-chemotaxis models. Int. J. Bifurc. Chaos 5, 1503–1524.

Download references

Author information

Correspondence to Majid Bani-Yaghoub.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (AVI 9.1 MB)

Below is the link to the electronic supplementary material. (AVI 8.85 MB)

Below is the link to the electronic supplementary material. (AVI 13.9 MB)

Below is the link to the electronic supplementary material. (AVI 9.1 MB)

Below is the link to the electronic supplementary material. (AVI 8.85 MB)

Below is the link to the electronic supplementary material. (AVI 13.9 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bani-Yaghoub, M., Amundsen, D.E. Dynamics of Notch Activity in a Model of Interacting Signaling Pathways. Bull. Math. Biol. 72, 780–804 (2010) doi:10.1007/s11538-009-9469-8

Download citation

  • Notch
  • Signaling pathways
  • Reaction–diffusion
  • Turing mechanism