Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions

  • Victor G. Kac
  • Johan W. van de Leur
Original Paper


We show that a system of Hirota bilinear equations introduced by Jimbo and Miwa defines tau-functions of the modified KP (MKP) hierarchy of evolution equations introduced by Dickey. Some other equivalent definitions of the MKP hierarchy are established. All polynomial tau-functions of the KP and the MKP hierarchies are found. Similar results are obtained for the reduced KP and MKP hierarchies.

Keywords and phrases

KP and MKP hierarchies tau-functions wave functions formal pseudodifferential operators Schur polynomials 

Mathematics Subject Classification (2010)

14M15 17B10 17B65 17B67 20G43 22E70 35Q53 35R03 47G30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11537_2018_1803_MOESM1_ESM.clo (9 kb)
Supplementary material, approximately 8.88 KB.
11537_2018_1803_MOESM2_ESM.cls (42 kb)
Supplementary material, approximately 41.7 KB.
11537_2018_1803_MOESM3_ESM.tex (104 kb)
Supplementary material, approximately 103 KB.


  1. [1]
    M. Adler and P. van Moerbeke, Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials, Duke Math. J., 80 (1995), 863–911.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Adler and P. van Moerbeke, Vertex operator solutions to the discrete KP-hierarchy, Comm. Math. Phys., 203 (1999), 185–210.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    L.-L. Chau, J.C. Shaw and H.C. Yen, Solving the KP hierarchy by gauge transformations, Comm. Math. Phys., 149 (1992), 263–278.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M.M. Crum, Associated Sturm–Liouville systems, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, In: Nonlinear Integrable Systems—Classical Theory and Quantum Theory, World Sci. Publ., River Edge, NJ, 1983, pp. 39–119.Google Scholar
  6. [6]
    L.A. Dickey, Modified KP and discrete KP, Lett. Math. Phys., 48 (1999), 277–289.MathSciNetCrossRefGoogle Scholar
  7. [7]
    L.A. Dickey, Soliton Equations and Hamiltonian Systems. Second ed., Adv. Ser. Math. Phys., 26, World Sci. Publ., River Edge, NJ, 2003.CrossRefMATHGoogle Scholar
  8. [8]
    A. Givental, An-1 singularities and nKdV hierarchies, Mosc. Math. J., 3 (2003), 475–505.MathSciNetMATHGoogle Scholar
  9. [9]
    G.F. Helminck and J.W. van de Leur, Geometric Bäcklund–Darboux transformations for the KP hierarchy, Publ. Res. Inst. Math. Sci., 37 (2001), 479–519.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. Jimbo and T. Miwa, Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    V.G. Kac and D.H. Peterson, Lectures on the infinite wedge-representation and the MKP hierarchy, In: Systèmes dynamiques non linéaires: intégrabilité et comportement qualitatif, Sém. Math. Sup., 102, Presses Univ. Montréal, Montreal, QC, 1986, pp. 141–184.Google Scholar
  12. [12]
    V.G. Kac and J.W. van de Leur, The geometry of spinors and the multicomponent BKP and DKP hierarchies, In: The Bispectral Problem, Montreal, PQ, 1997, CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998, pp. 159–202.Google Scholar
  13. [13]
    V.G. Kac and J.W. van de Leur, The n-component KP hierarchy and representation theory, J. Math. Phys., 44 (2003), Special Issue: Integrability, Topological Solitons and Beyond, 3245–3293.Google Scholar
  14. [14]
    V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynam., Springer-Verlag, 1991.CrossRefMATHGoogle Scholar
  15. [15]
    M. Sato, Soliton equations as dynamical systems on a infinite dimensional Grassmann manifold, RIMS Kôkyûroku, 439 (1981), 30–46.Google Scholar
  16. [16]
    T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83 (1986), 333–382.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    V.V. Sokolov and A.B. Shabat, (L,A)-pairs and Ricatti type substitution, Funct. Anal. Appl., 14 (1980), 148–150.CrossRefMATHGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Mathematical InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations