Sharp threshold phenomena in statistical physics

  • Hugo Duminil-CopinEmail author


This text describes the content of the Takagi Lectures given by the author in Kyoto in 2017. The lectures present some aspects of the theory of sharp thresholds for Boolean functions and its application to the study of phase transitions in statistical physics.

Keywords and phrases

percolation discontinuous phase transition 

Mathematics Subject Classification (2010)

82B43 82B27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11537_2018_1726_MOESM1_ESM.tex (79 kb)
Supplementary material, approximately 79.2 KB.


  1. [1]
    M. Aizenman and D.J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys., 108 (1987), 489–526.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. Beckner, Inequalities in Fourier analysis, Ann. of Math. (2), 102 (1975), 159–182.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    V. Beffara and H. Duminil-Copin, The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1, Probab. Theory Related Fields, 153 (2012), 511–542.CrossRefzbMATHGoogle Scholar
  4. [4]
    B. Bollobás and O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Related Fields, 136 (2006), 417–468.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    B. Bollobás and O. Riordan, Percolation, Cambridge Univ. Press, New York, 2006.CrossRefzbMATHGoogle Scholar
  6. [6]
    B. Bollobás and O. Riordan, A short proof of the Harris–Kesten theorem, Bull. London Math. Soc., 38 (2006), 470–484.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Bollobás and O. Riordan, Percolation on self-dual polygon configurations, In: An Irregular Mind, Bolyai Soc. Math. Stud., 21, János Bolyai Math. Soc., Budapest, 2010, pp. 131–217.Google Scholar
  8. [8]
    A. Bonami, Étude des coefficients de Fourier des fonctions de L p(G), Ann. Inst. Fourier (Grenoble), 20 (1970), 335–402.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of variables in product spaces, Israel J. Math., 77 (1992), 55–64.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S.R. Broadbent and J.M. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc., 53 (1957), 629–641.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen and S. Smirnov, Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Acad. Sci. Paris Math., 352 (2014), 157–161.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Duminil-Copin, Geometric Representations of Lattice Spin Models, Spartacus, 2015.zbMATHGoogle Scholar
  13. [13]
    H. Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic lattice, preprint, arXiv:1707.00520.Google Scholar
  14. [14]
    H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu and V. Tassion, Discontinuity of the phase transition for the planar random-cluster and Potts models with q ≤ 4, preprint, arXiv:1611.09877.Google Scholar
  15. [15]
    H. Duminil-Copin and I. Manolescu, The phase transitions of the planar random-cluster and Potts models with q ≥ 1 are sharp, Probab. Theory Related Fields, 164 (2016), 865–892.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Duminil-Copin, A. Raoufi and V. Tassion, Exponential decay of connection probabilities for subcritical Voronoi percolation in Rd, preprint, arXiv:1705.07978.Google Scholar
  17. [17]
    H. Duminil-Copin, A. Raoufi and V. Tassion, Sharp phase transition for the random-cluster and Potts models via decision trees, preprint, arXiv:1705.03104.Google Scholar
  18. [18]
    H. Duminil-Copin, A. Raoufi and V. Tassion, Subcritical phase of d-dimensional Poisson–Boolean percolation and its vacant set, preprint, arXiv:1805.00695.Google Scholar
  19. [19]
    H. Duminil-Copin, A. Raoufi and V. Tassion, A new computation of the critical point for the planar random-cluster model with q ≥ 1, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), 422–436.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Duminil-Copin, V. Sidoravicius and V. Tassion, Continuity of the phase transition for planar random-cluster and Potts models with 1 ≤ q ≤ 4, Comm. Math. Phys., 349 (2017), 47–107.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Comm. Math. Phys., 343 (2016), 725–745.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on Zd, Enseign. Math., 62 (2016), 199–206.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen, 6 (1959), 290–297.MathSciNetzbMATHGoogle Scholar
  24. [24]
    R. Fitzner and R. van der Hofstad, Mean-field behavior for nearest-neighbor percolation in d < 10, Electron. J. Probab., 22 (2017), no. 43.Google Scholar
  25. [25]
    C.M. Fortuin and P.W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica, 57 (1972), 536–564.MathSciNetCrossRefGoogle Scholar
  26. [26]
    B.T. Graham and G.R. Grimmett, Influence and sharp-threshold theorems for monotonic measures, Ann. Probab., 34 (2006), 1726–1745.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    G.R. Grimmett, Percolation. 2nd ed., Grundlehren Math.Wiss., 321, Springer-Verlag, 1999.CrossRefzbMATHGoogle Scholar
  28. [28]
    G.R. Grimmett, Inequalities and entanglements for percolation and random-cluster models, In: Perplexing Problems in Probability, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999, pp. 91–105.CrossRefGoogle Scholar
  29. [29]
    G.R. Grimmett, The Random-Cluster Model, Grundlehren Math. Wiss., 333, Springer-Verlag, 2006.CrossRefGoogle Scholar
  30. [30]
    G.R. Grimmett, S. Janson and J.R. Norris, Influence in product spaces, Adv. in Appl. Probab., 48 (2016), A, 145–152.MathSciNetCrossRefGoogle Scholar
  31. [31]
    J. Kahn, G. Kalai and N. Linial, The influence of variables on Boolean functions, In: 29th Annual Symposium on Foundations of Computer Science, IEEE, 1988, pp. 68–80.Google Scholar
  32. [32]
    H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., 74 (1980), 41–59.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    G.A. Margulis, Probabilistic characteristics of graphs with large connectivity, Problemy Peredaci Informacii, 10 (1974), 101–108.MathSciNetzbMATHGoogle Scholar
  34. [34]
    M.V. Menshikov, Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR, 288 (1986), 1308–1311.MathSciNetGoogle Scholar
  35. [35]
    R. O’Donnell, M. Saks, O. Schramm and R.A. Servedio, Every decision tree has an influential variable, In: 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2005, pp. 31–39.Google Scholar
  36. [36]
    L. Russo, A note on percolation, Z.Wahrscheinlichkeitstheorie und Verw, 43 (1978), 39–48.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    L. Russo, On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete, 56 (1981), 229–237.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    L. Russo, An approximate zero-one law, Z. Wahrsch. Verw. Gebiete, 61 (1982), 129–139.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    P.D. Seymour and D.J.A. Welsh, Percolation probabilities on the square lattice, In: Advances in Graph Theory, Ann. Discrete Math., 3, North-Holland, 1978, pp. 227–245.CrossRefGoogle Scholar
  40. [40]
    M. Talagrand, On Russo’s approximate zero-one law, Ann. Probab., 22 (1994), 1576–1587.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    V. Tassion, Planarité et localité en percolation, Ph.D. thesis, ENS Lyon, 2014.Google Scholar
  42. [42]
    V. Tassion, Crossing probabilities for Voronoi percolation, Ann. Probab., 44 (2016), 3385–3398.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A.C.C. Yao, Probabilistic computations: Toward a unified measure of complexity, In: 18th Annual Symposium on Foundations of Computer Science, IEEE, 1977, pp. 222–227.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  2. 2.Section de Mathématiques, Université de GenèveGenève 4Switzerland

Personalised recommendations