Targeted Oncology

, Volume 13, Issue 5, pp 599–609 | Cite as

Immunological Correlates of Response to Immune Checkpoint Inhibitors in Metastatic Urothelial Carcinoma

  • Alice Tzeng
  • C. Marcela Diaz-Montero
  • Patricia A. Rayman
  • Jin S. Kim
  • Paul G. PavicicJr
  • James H. Finke
  • Pedro C. Barata
  • Marcelo Lamenza
  • Sarah Devonshire
  • Kim Schach
  • Hamid Emamekhoo
  • Marc S. Ernstoff
  • Christopher J. Hoimes
  • Brian I. Rini
  • Jorge A. Garcia
  • Timothy D. Gilligan
  • Moshe C. OrnsteinEmail author
  • Petros GrivasEmail author
Original Research Article



The identification of prognostic and/or predictive biomarkers for response to immune checkpoint inhibitors (ICI) could help guide treatment decisions.


We assessed changes in programmed cell death-1 (PD1)/PD1 ligand (PDL1) expression in key immunomodulatory cell subsets (myeloid-derived suppressor cells [MDSC]; cytotoxic T lymphocytes [CTL]) following ICI therapy and investigated whether these changes correlated with outcomes in patients with metastatic urothelial carcinoma (mUC).

Patients and Methods

Serial peripheral blood samples were collected from ICI-treated mUC patients. Flow cytometry was used to quantify PD1/PDL1 expression on MDSC (CD33+HLADR) and CTL (CD8+CD4) from peripheral blood mononuclear cells. MDSC were grouped into monocytic (M)-MDSC (CD14+CD15), polymorphonuclear (PMN)-MDSC (CD14CD15+), and immature (I)-MDSC (CD14CD15). Mixed-model regression and Wilcoxon signed-rank or rank-sum tests were performed to assess post-ICI changes in immune biomarker expression and identify correlations between PD1/PDL1 expression and objective response to ICI.


Of 41 ICI-treated patients, 26 received anti-PDL1 (23 atezolizumab/3 avelumab) and 15 received anti-PD1 (pembrolizumab) therapy. Based on available data, 27.5% had prior intravesical Bacillus Calmette–Guérin therapy, 42% had prior neoadjuvant chemotherapy, and 70% had prior cystectomy or nephroureterectomy. Successive doses of anti-PDL1 correlated with decreased percentage of PDL1+ (%PDL1+) M-MDSC, while doses of anti-PD1 correlated with decreased %PD1+ M- and I-MDSC. Although pre-treatment %PD1+ CTL did not predict response, a greater %PD1+ CTL within 9 weeks after ICI initiation correlated with objective response.


Treatment with ICI correlated with distinct changes in PD1/PDL1-expressing peripheral immune cell subsets, which may predict objective response to ICI. Further studies are required to validate immune molecular expression as a prognostic and/or predictive biomarker for long-term outcomes in mUC.


Compliance with Ethical Standards


No external funding was used in the preparation of this manuscript.

Conflict of Interest

Alice Tzeng, C. Marcela Diaz-Montero, Patricia A. Rayman, Jin S. Kim, Paul G. Pavicic Jr., James H. Finke, Pedro C. Barata, Marcelo Lamenza, Sarah Devonshire, Kim Schach, Hamid Emamekhoo, Marc S. Ernstoff, Christopher J. Hoimes, Brian I. Rini, Jorge A. Garcia, Timothy D. Gilligan, Moshe C. Ornstein, and Petros Grivas declare that they have no conflicts of interest that might be relevant to the contents of this manuscript, and that there has been no significant financial support for this work that could have influenced its outcome.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefGoogle Scholar
  2. 2.
    Milowsky MI, Rumble RB, Booth CM, Gilligan T, Eapen LJ, Hauke RJ, et al. Guideline on muscle-invasive and metastatic bladder cancer (European Association of Urology guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J Clin Oncol. 2016;34(16):1945–52.CrossRefGoogle Scholar
  3. 3.
    Wong-You-Cheong JJ, Woodward PJ, Manning MA, Sesterhenn IA. From the archives of the AFIP: neoplasms of the urinary bladder: radiologic-pathologic correlation. Radiographics. 2006;26(2):553–80.CrossRefGoogle Scholar
  4. 4.
    Carballido EM, Rosenberg JE. Optimal treatment for metastatic bladder cancer. Curr Oncol Rep. 2014;16(9):404.CrossRefGoogle Scholar
  5. 5.
    Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.CrossRefGoogle Scholar
  6. 6.
    Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.CrossRefGoogle Scholar
  7. 7.
    Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.CrossRefGoogle Scholar
  8. 8.
    Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.CrossRefGoogle Scholar
  9. 9.
    Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, Aljumaily R, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN solid tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2017;19(1):51–64.CrossRefGoogle Scholar
  10. 10.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.CrossRefGoogle Scholar
  11. 11.
    Powles T, O'Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3(9):e172411.CrossRefGoogle Scholar
  12. 12.
    Bidnur S, Savdie R, Black PC. Inhibiting immune checkpoints for the treatment of bladder cancer. Bladder Cancer. 2016;2(1):15–25.CrossRefGoogle Scholar
  13. 13.
    Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA. 2017;114(19):4993–8.CrossRefGoogle Scholar
  14. 14.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59.CrossRefGoogle Scholar
  15. 15.
    Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011;60(10):1419–30.CrossRefGoogle Scholar
  16. 16.
    Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90.CrossRefGoogle Scholar
  17. 17.
    Ridder K, Sevko A, Heide J, Dams M, Rupp AK, Macas J, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology. 2015;4(6):e1008371. CrossRefGoogle Scholar
  18. 18.
    Liu Y, Yu Y, Yang S, Zeng B, Zhang Z, Jiao G, et al. Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol Immunother. 2009;58(5):687–97.CrossRefGoogle Scholar
  19. 19.
    Maleki Vareki S, Garrigos C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol. 2017;116:116–24.CrossRefGoogle Scholar
  20. 20.
    Ornstein MC, Diaz-Montero CM, Rayman P, Elson P, Haywood S, Finke JH, et al. Myeloid-derived suppressors cells (MDSC) correlate with clinicopathologic factors and pathologic complete response (pCR) in patients with urothelial carcinoma (UC) undergoing cystectomy. Urol Oncol. 2018. Scholar
  21. 21.
    Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–37.CrossRefGoogle Scholar
  22. 22.
    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.CrossRefGoogle Scholar
  23. 23.
    Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol. 2017;30(12):1666–76.CrossRefGoogle Scholar
  24. 24.
    Gao JJ, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nature Med. 2017;23(5):551–5.CrossRefGoogle Scholar
  25. 25.
    Lines JL, Sempere LF, Wang L, Pantazi E, Mak J, O’Connell S, et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014;74(7):1924–32.CrossRefGoogle Scholar
  26. 26.
    Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res. 2015;5(7):2190–201.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Linsley PS, Chaussabel D, Speake C. The relationship of immune cell signatures to patient survival varies within and between tumor types. Plos One. 2015;10(9):e0138726.CrossRefGoogle Scholar
  28. 28.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.CrossRefGoogle Scholar
  29. 29.
    Koeppel F, Blanchard S, Jovelet C, Genin B, Marcaillou C, Martin E, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS One. 2017;12(11):e0188174.CrossRefGoogle Scholar
  30. 30.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.CrossRefGoogle Scholar
  31. 31.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefGoogle Scholar
  32. 32.
    Barata PC, Koshkin VS, Funchain P, Sohal D, Pritchard A, Klek S, et al. Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann Oncol. 2017;28(10):2458–63.CrossRefGoogle Scholar
  33. 33.
    Agarwal N, Pal SK, Hahn AW, Nussenzveig RH, Pond GR, Gupta SV, et al. Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling of circulating tumor DNA. Cancer. 2018;124(10):2115–24.CrossRefGoogle Scholar
  34. 34.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.CrossRefGoogle Scholar
  35. 35.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2017;359:97–103.CrossRefGoogle Scholar
  36. 36.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2017;359:91–7.CrossRefGoogle Scholar
  37. 37.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefGoogle Scholar
  38. 38.
    Kuklinski LF, Yan S, Li Z, Fisher JL, Cheng C, Noelle RJ, et al. VISTA expression on tumor-infiltrating inflammatory cells in primary cutaneous melanoma correlates with poor disease-specific survival. Cancer Immunol Immunother. 2018;67(7):1113–21.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alice Tzeng
    • 1
  • C. Marcela Diaz-Montero
    • 2
  • Patricia A. Rayman
    • 2
  • Jin S. Kim
    • 2
  • Paul G. PavicicJr
    • 2
  • James H. Finke
    • 2
  • Pedro C. Barata
    • 3
  • Marcelo Lamenza
    • 3
  • Sarah Devonshire
    • 3
  • Kim Schach
    • 3
  • Hamid Emamekhoo
    • 4
  • Marc S. Ernstoff
    • 5
  • Christopher J. Hoimes
    • 6
  • Brian I. Rini
    • 3
  • Jorge A. Garcia
    • 3
  • Timothy D. Gilligan
    • 3
  • Moshe C. Ornstein
    • 3
    Email author
  • Petros Grivas
    • 3
    • 7
    Email author
  1. 1.Cleveland Clinic Lerner College of Medicine Case Western Reserve UniversityClevelandUSA
  2. 2.Lerner Research InstituteCleveland ClinicClevelandUSA
  3. 3.Taussig Cancer InstituteCleveland ClinicClevelandUSA
  4. 4.Division of Hematology and Medical OncologyUniversity of WisconsinMadisonUSA
  5. 5.Roswell Park Cancer InstituteBuffaloUSA
  6. 6.University Hospitals Seidman Cancer Center Case Western Reserve UniversityClevelandUSA
  7. 7.Department of Medicine, Division of OncologyUniversity of Washington and Fred Hutchinson Cancer Research Center, Seattle Cancer Care AllianceSeattleUSA

Personalised recommendations