Targeted Oncology

, Volume 13, Issue 5, pp 557–565 | Cite as

Targeted Therapies in the Treatment of Sarcomas

  • Brianna Hoffner
  • Anthony D. EliasEmail author
  • Victor M. Villalobos
Review Article


About 50% of sarcomas have specific pathology-defining molecular alterations including mutations, fusion genes, and gene amplifications. Some of these alterations appear to be oncogenic drivers, and a subset can be utilized as targets for standard or experimental molecularly targeted agents in the clinic. In addition, immunotherapies may have a growing role in the treatment of sarcomas in the future.


Compliance with Ethical Standards


No external funding was used in the preparation of this manuscript.

Conflict of Interest

Brianna Hoffner, Anthony D. Elias, and Victor M Villalobos declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.


  1. 1.
    Burningham Z, Hashibe M, Spector L, Schiffman JD. The epidemiology of sarcoma. Clin Sarcoma Res. 2012;2:14.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schaefer I-M, Cote GM, Hornick JL. Contemporary sarcoma diagnosis, genetics, and genomics. J Clin Oncol. 2018;36:101-110.CrossRefPubMedGoogle Scholar
  3. 3.
    von Mehren M, Joensuu H. Gastrointestinal stromal tumors. J Clin Oncol. 2018;36:136–43.Google Scholar
  4. 4.
    Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Joensuu H, Eriksson M, Sundby Hall K, Hartmann JT, Pink D, Schütte J, et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA. 2012;307:1265–72.CrossRefGoogle Scholar
  6. 6.
    Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.CrossRefGoogle Scholar
  7. 7.
    Demetri GD, Reichardt P, Kang Y-K, Blay J-Y, Rutkowski P, Gelderblom H, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:295–302.CrossRefGoogle Scholar
  8. 8.
    Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med. 2017;9:eaao1690.CrossRefPubMedGoogle Scholar
  9. 9.
    Heinrich MC, Jones RL, von Mehren M, Schoffski P, Bauer S, Mir O, et al. Clinical Activity of BLU-285 a Highly Potent and Selective KIT/PDGFRA Inhibitor Designed to Treat Gastrointestinal Stromal Tumor (GIST). Connective Tissue Oncology Society Annual Meeting. Maui, USA; 2017.Google Scholar
  10. 10.
    Somaiah N, Razak A, Gordon M, Janku F, Friedlander S, Flynn D, et al. DCC-2618, A Novel Pan-KIT and PDGFRA Kinase Switch Control Inhibitor Demonstrates Encouraging Activity in Patients (Pts) with Gastrointestinal Stromal Tumors (GIST). Connective Tissue Oncology Society Annual Meeting. Maui, USA; 2017.Google Scholar
  11. 11.
    Trent JC, Tap WD, Wagner AJ, Shields A, Alcantar O, Zhang C, et al. Pharmacodynamic (PD) Study of PLX9486, A novel KIT Inhibitor with Potent Activity Against Exon 17/18 Activation Loop Mutations in Patients with Gastrointestinal Stromal Tumor (GIST). Connective Tissue Oncology Society Annual Meeting. 2017.Google Scholar
  12. 12.
    Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388:488–97.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    van der Graaf W, Blay JY, Chawla SP, Kim DW. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.CrossRefPubMedGoogle Scholar
  14. 14.
    Chi Y, Sun Y, Cai J, Yao Y, Hong X, Fang Z, et al. Phase II study of anlotinib for treatment of advanced soft tissues sarcomas. J Clin Oncol. 2016;34(15_suppl):11005.CrossRefGoogle Scholar
  15. 15.
    Judson IR, Morden JP, Leahy MG, Bhadri V, Campbell-Hewson Q, Cubedo R, et al. Activity of cediranib in alveolar soft part sarcoma (ASPS) confirmed by CASPS (cediranib in ASPS), an international, randomised phase II trial (C2130/A12118). J Clin Oncol. 2017;35(15_suppl):11004.CrossRefGoogle Scholar
  16. 16.
    Kummar S, Allen D, Monks A, Polley EC, Hose CD, Ivy SP, et al. Cediranib for metastatic alveolar soft part sarcoma. J Clin Oncol. 2013;31:2296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mossé YP, Voss SD, Lim MS, Rolland D, Minard CG, Fox E, et al. Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children’s Oncology Group study. J Clin Oncol. 2017;35:3215–21.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schöffski P, Sufliarsky J, Gelderblom H, Blay J-Y, Strauss SJ, Stacchiotti S, et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): a multicentre, single-drug, prospective, non-randomised phase 2 trial. Lancet Respir Med. 2018;6:431–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Cornelis F, Truchetet ME, Amoretti N, Verdier D, Fournier C, Pillet O, et al. Bisphosphonate therapy for unresectable symptomatic benign bone tumors: a long-term prospective study of tolerance and efficacy. Bone. 2014;58:11–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Chawla S, Henshaw R, Seeger L, Choy E, Blay J-Y, Ferrari S, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14:901–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay J-Y, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11:275–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Messersmith WA, Shapiro GI, Cleary JM, Jimeno A, Dasari A, Huang B, et al. A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clin Cancer Res. 2015;21:60–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Villalobos VM, Hall F, Jimeno A, Gore L, Kern K, Cesari R, et al. Long-term follow-up of desmoid fibromatosis treated with PF-03084014, an oral gamma secretase inhibitor. Ann Surg Oncol. 2017;17:158.Google Scholar
  24. 24.
    Kummar S, O’Sullivan Coyne G, Do KT, Turkbey B, Meltzer PS, Polley E, et al. Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J Clin Oncol. 2016;71.199–11.Google Scholar
  25. 25.
    Tap WD, Villalobos VM, Cote GM, Burris HA, Janku F, Mir O, et al. A Phase 1 Study of Ag-120, an Idh1 Mutant Enzyme Inhibitor: Results From the Chondrosarcoma Dose Escalation and Expansion Cohorts. Connective Tissue Oncology Society Annual Meeting. Lisbon, Portugal; 2016.Google Scholar
  26. 26.
    de Jonge M, de Weger VA, Dickson MA, Langenberg M, Le Cesne A, Wagner AJ, et al. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur J Cancer. 2017;76:144–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Ray-Coquard I, Blay JY, Italiano A, Le Cesne A, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 2012;13:1133–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Wagner AJ, Banerji U, Mahipal A, Somaiah N, Hirsch H, Fancourt C, et al. Phase I trial of the human double minute 2 inhibitor MK-8242 in patients with advanced solid tumors. J Clin Oncol. 2017;35:1304–11.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dickson MA. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res. 2014;20:3379–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Dickson MA, Tap WD, Keohan ML, D’Angelo SP, Gounder MM, Antonescu CR, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol. 2013;31:2024–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18:1493–501.CrossRefPubMedGoogle Scholar
  32. 32.
    Gounder MM, Stacchiotti S, Schöffski P, Attia S, Italiano A, Jones R, et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950). J Clin Oncol. 2017;(15_suppl):11058.CrossRefGoogle Scholar
  33. 33.
    Gounder M, Stacchiotti S, Schoffski P, hoffman L, Chugh R, Villalobos V, et al. EZH2 Inhibitor Tazemetostat in Adult and Pediatric Patients with Epithelioid Sarcoma: Results From 3 Prospective Clinical Trials. Connective Tissue Oncology Society Annual Meeting. Maui, USA; 2017.Google Scholar
  34. 34.
    D’Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, Jahagirdar BN, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018;1–11.Google Scholar
  35. 35.
    D’Angelo SP, Melchiori L, Merchant MS, Bernstein DB, Glod J, Kaplan RN, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1c259T cells in synovial sarcoma. Cancer Discov. 2018;8:944–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Chawla S, Van Tine BA, Pollack SM, Ganjoo KN, Elias AD, Riedel RF, et al. A phase 2 study of CMB305 and Atezolizumab in NY-ESO-1+ soft tissue sarcoma: interim analysis of immunogenicity, tumor control and survival. Ann Oncol. 2017;28:v521–38.CrossRefGoogle Scholar
  37. 37.
    Nakahara M, Isozaki K, Hirota S, Miyagawa J, Hase-Sawada N, Taniguchi M, et al. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology. 1998;115:1090–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Gramza AW, Corless CL, Heinrich MC. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res. 2009;15:7510–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Saponara M, Urbini M, Astolfi A, Indio V, Ercolani G, Del Gaudio M, et al. Molecular characterization of metastatic exon 11 mutant gastrointestinal stromal tumors (GIST) beyond KIT/PDGFRα genotype evaluated by next generation sequencing (NGS). Oncotarget. 2015;6:42243–57.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Heinrich MC, Griffith D, McKinley A, Patterson J, Presnell A, Ramachandran A, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:4375–84.CrossRefPubMedGoogle Scholar
  41. 41.
    Kang Y-K, Ryu M-H, Yoo C, Ryoo B-Y, Kim HJ, Lee JJ, et al. Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2013;14:1175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wada R, Arai H, Kure S, Peng W-X, Naito Z. “Wild type” GIST: Clinicopathological features and clinical practice. Pathol Int. 2016;66:431–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Pantaleo MA, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Belinsky MG, Rink L, Cai KQ, Capuzzi SJ, Hoang Y, Chien J, et al. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case. BMC Cancer. 2015;15:399.CrossRefGoogle Scholar
  45. 45.
    Shi E, Chmielecki J, Tang C-M, Wang K, Heinrich MC, Kang G, et al. FGFR1 and NTRK3 actionable alterations in “wild-type” gastrointestinal stromal tumors. J Transl Med. 2016;14:298–11.CrossRefGoogle Scholar
  46. 46.
    Settas N, Faucz FR, Stratakis CA. Succinate dehydrogenase (SDH) deficiency, Carney triad and the epigenome. Mol Cell Endocrinol. 2018;469:107–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Maertens O, Prenen H, Debiec-Rychter M, Wozniak A, Sciot R, Pauwels P, et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet. 2006;15:1015–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Lowery CD, Blosser W, Dowless M, Knoche S, Stephens J, Li H, et al. Olaratumab exerts anti-tumor activity in preclinical models of pediatric bone and soft tissue tumors through inhibition of platelet-derived growth factor receptor α. Clin Cancer Res. 2017;1258:2017–24.Google Scholar
  49. 49.
    Wagner AJ, Kindler H, Gelderblom H, Schoffski P, Bauer S, Hohenberger P, et al. A phase II study of a human anti-PDGFRα monoclonal antibody (olaratumab, IMC-3G3) in previously treated patients with metastatic gastrointestinal stromal tumors. Ann Oncol. 2017;28:541–6.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Attia S, Bolejack V, Ganjoo KN, George S, Agulnik M, Rushing DA, et al. A phase II trial of regorafenib (REGO) in patients (pts) with advanced Ewing sarcoma and related tumors (EWS) of soft tissue and bone: SARC024 trial results. J Clin Oncol. 2017;35(15_suppl):11005.CrossRefGoogle Scholar
  51. 51.
    van der Heijden L, Dijkstra PDS, Blay J-Y, Gelderblom H. Giant cell tumour of bone in the denosumab era. Eur J Cancer. 2017;77:75–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Hristov B, Shokek O, Frassica DA. The role of radiation treatment in the contemporary management of bone tumors. J Natl Compr Cancer Netw. 2007;5:456–66.CrossRefGoogle Scholar
  53. 53.
    Tse LF, Wong KC, Kumta SM, Huang L, Chow TC, Griffith JF. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study. Bone. 2008;42:68–73.CrossRefPubMedGoogle Scholar
  54. 54.
    Lazar AJF, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Park JS, Nakache Y-P, Katz J, Boutin RD, Steffner RJ, Monjazeb AM, et al. Conservative management of desmoid tumors is safe and effective. J Surg Res. 2016;205:115–20.CrossRefPubMedGoogle Scholar
  56. 56.
    Polychronidou G, Karavasilis V, Pollack SM, Huang PH, Lee A, Jones RL. Novel therapeutic approaches in chondrosarcoma. Future Oncol. 2017;13:637–48.CrossRefPubMedGoogle Scholar
  57. 57.
    Schaap FG, French PJ, Bovée JVMG. Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 in tumors. Adv Anat Pathol. 2013;20:32–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.CrossRefPubMedGoogle Scholar
  59. 59.
    Li L, Paz AC, Wilky BA, Johnson B, Galoian K, Rosenberg A, et al. Treatment with a small molecule mutant IDH1 inhibitor suppresses tumorigenic activity and decreases production of the oncometabolite 2-hydroxyglutarate in human chondrosarcoma cells. Mills K, editor. PLoS One. 2015;10:e0133813.Google Scholar
  60. 60.
    Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P, et al. MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 2015;46:549–53.CrossRefPubMedGoogle Scholar
  61. 61.
    Kyriazoglou AI, Vieira J, Dimitriadis E, Arnogiannaki N, Teixeira MR, Pandis N. 12q amplification defines a subtype of extraskeletal osteosarcoma with good prognosis that is the soft tissue homologue of parosteal osteosarcoma. Cancer Genet. 2012;205:332–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Su WT, Alaminos M, Mora J, Cheung N-K, La Quaglia MP, Gerald WL. Positional gene expression analysis identifies 12q overexpression and amplification in a subset of neuroblastomas. Cancer Genet Cytogenet. 2004;154:131–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, PL DC, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42:715–21.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Duffy MJ, Synnott NC, McGowan PM, Crown J, O’Connor D, Gallagher WM. p53 as a target for the treatment of cancer. Cancer Treat Rev. 2014;40:1153–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2017;25:133–43.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Italiano A. Role of the EZH2 histone methyltransferase as a therapeutic target in cancer. Pharmacol Ther. 2016;165:26–31.CrossRefPubMedGoogle Scholar
  67. 67.
    Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho Y-J, et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010;18:316–28.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 2017;46:197–204.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Burgess MA, Bolejack V, Van Tine BA, Schuetze S, Hu J, D’Angelo SP, et al. Multicenter phase II study of pembrolizumab (P) in advanced soft tissue (STS) and bone sarcomas (BS): final results of SARC028 and biomarker analyses. J Clin Oncol. 2017;35(15_suppl):11008.CrossRefGoogle Scholar
  70. 70.
    Ben-Ami E, Barysauskas CM, Solomon S, Tahlil K, Malley R, Hohos M, et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: results of a phase 2 study. Cancer. 2017;123:3285–90.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lai J-P, Rosenberg AZ, Miettinen MM, C-CR L. NY-ESO-1 expression in sarcomas. OncoImmunology. 2014;1:1409–10.CrossRefGoogle Scholar
  72. 72.
    Endo M, de Graaff MA, Ingram DR, Lim S, Lev DC, Bruijn IHB-D, et al. NY-ESO-1 (CTAG1B) expression in mesenchymal tumors. Mod Pathol. 2015;28:587–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Medicine, Division of Medical OncologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations