Prognostic and Predictive Factors for Renal Cell Carcinoma

  • Cristina Suárez
  • Marc Campayo
  • Romà Bastús
  • Sergi Castillo
  • Olatz Etxanitz
  • Marta Guix
  • Núria Sala
  • Enrique Gallardo
Review Article

Abstract

Metastatic renal cell carcinoma (mRCC) is an incurable malignancy, characterized by its resistance to traditional chemotherapy, radiation, and hormonal therapy. Treatment perspectives and prognosis of patients with mRCC have been significantly improved by advances in the understanding of its molecular pathogenesis, which have led to the development of targeted therapeutics. Different molecular factors derived from the tumor or the host detected in both tissue or serum could be predictive of therapeutic benefit. Some of them suggest a rational selection of patients to be treated with certain therapies, though none have been validated for routine use. This article provides an overview of both clinical and molecular factors associated with predictive or prognostic value in mRCC and emphasizes that both should be considered in parallel to provide the most appropriate, individualized treatment and achieve the best outcomes in clinical practice.

Notes

Acknowledgements

Native English and technical editing, and styling prior to submission was performed by Melanie Gatt, on behalf of Springer Healthcare Communications. This medical writing assistance was funded by the Fundació Privada Institut d’Investigació Oncològica Vall d’Hebron (VHIO).

Compliance with Ethical Standards

Funding

Medical writing assistance by Springer Healthcare Communications was funded by the Fundació Privada Institut d’Investigació Oncològica Vall d’Hebron (VHIO).

Conflict of Interest

Cristina Suárez has received consulting fees or honorarium from Pfizer and Bristol-Myers Squibb. The other authors declare that they have no conflict of interest.

References

  1. 1.
    Oudard S, George D, Medioni J, Motzer R. Treatment options in renal cell carcinoma: past, present and future. Ann Oncol. 2007;18(suppl_10):x25–31.  https://doi.org/10.1093/annonc/mdm411.PubMedCrossRefGoogle Scholar
  2. 2.
    Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 2017;376(4):354–66.  https://doi.org/10.1056/NEJMra1601333.PubMedCrossRefGoogle Scholar
  3. 3.
    Rini BI, Flaherty K. Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol Oncol. 2008;26(5):543–9.  https://doi.org/10.1016/j.urolonc.2008.03.012.PubMedCrossRefGoogle Scholar
  4. 4.
    Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002;20(1):289–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Heng DY, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27(34):5794–9.  https://doi.org/10.1200/JCO.2008.21.4809.PubMedCrossRefGoogle Scholar
  6. 6.
    Rini BI, Cohen DP, Lu DR, Chen I, Hariharan S, Gore ME, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73.  https://doi.org/10.1093/jnci/djr128.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schmidinger M, Vogl UM, Bojic M, Lamm W, Heinzl H, Haitel A, et al. Hypothyroidism in patients with renal cell carcinoma: blessing or curse? Cancer. 2011;117(3):534–44.  https://doi.org/10.1002/cncr.25422.PubMedCrossRefGoogle Scholar
  8. 8.
    Michaelson MD, Cohen DP, Li S, Motzer RJ, Escudier B, Barrios CH, et al. Hand-foot syndrome (HFS) as a potential biomarker of efficacy in patients (pts) with metastatic renal cell carcinoma (mRCC) treated with sunitinib (SU). J Clin Oncol. 2011;29(7_suppl):320.CrossRefGoogle Scholar
  9. 9.
    Dabydeen DA, Jagannathan JP, Ramaiya N, Krajewski K, Schutz FA, Cho DC, et al. Pneumonitis associated with mTOR inhibitors therapy in patients with metastatic renal cell carcinoma: incidence, radiographic findings and correlation with clinical outcome. Eur J Cancer. 2012;48(10):1519–24.  https://doi.org/10.1016/j.ejca.2012.03.012.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee CK, Marschner IC, Simes RJ, Voysey M, Egleston B, Hudes G, et al. Increase in cholesterol predicts survival advantage in renal cell carcinoma patients treated with temsirolimus. Clin Cancer Res. 2012;18(11):3188–96.  https://doi.org/10.1158/1078-0432.CCR-11-3137.PubMedCrossRefGoogle Scholar
  11. 11.
    Sobin LH, Gospodarowicz MK, Wittekind C; International Union Against Cancer (UICC). TNM classification of malignant tumors, 7th edn. Hoboken, NJ: Wiley-Blackwell; 2009.Google Scholar
  12. 12.
    Kim SP, Alt AL, Weight CJ, Costello BA, Cheville JC, Lohse C, et al. Independent validation of the 2010 American Joint Committee on Cancer TNM classification for renal cell carcinoma: results from a large, single institution cohort. J Urol. 2011;185(6):2035–9.  https://doi.org/10.1016/j.juro.2011.02.059.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilbert SM, Murphy AM, Katz AE, Goluboff ET, Sawczuk IS, Olsson CA, et al. Reevaluation of TNM staging of renal cortical tumors: recurrence and survival for T1N0M0 and T3aN0M0 tumors are equivalent. Urology. 2006;68(2):287–91.  https://doi.org/10.1016/j.urology.2006.02.012.PubMedCrossRefGoogle Scholar
  14. 14.
    Siddiqui SA, Frank I, Leibovich BC, Cheville JC, Lohse CM, Zincke H, et al. Impact of tumor size on the predictive ability of the pT3a primary tumor classification for renal cell carcinoma. J Urol. 2007;177(1):59–62.  https://doi.org/10.1016/j.juro.2006.08.069.PubMedCrossRefGoogle Scholar
  15. 15.
    Verhoest G, Avakian R, Bensalah K, Thuret R, Ficarra V, Artibani W, et al. Urinary collecting system invasion is an independent prognostic factor of organ confined renal cell carcinoma. J Urol. 2009;182(3):854–9.  https://doi.org/10.1016/j.juro.2009.05.017.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson CB, Clark PE, Morgan TM, Stratton KL, Herrell SD, Davis R, et al. Urinary collecting system invasion is a predictor for overall and disease-specific survival in locally invasive renal cell carcinoma. Urology. 2011;78(1):99–104.  https://doi.org/10.1016/j.urology.2011.02.039.PubMedCrossRefGoogle Scholar
  17. 17.
    Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Leibovich BC, Lohse CM, Crispen PL, Boorjian SA, Thompson RH, Blute ML, et al. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol. 2010;183(4):1309–15.  https://doi.org/10.1016/j.juro.2009.12.035.PubMedCrossRefGoogle Scholar
  19. 19.
    Teloken PE, Thompson RH, Tickoo SK, Cronin A, Savage C, Reuter VE, et al. Prognostic impact of histological subtype on surgically treated localized renal cell carcinoma. J Urol. 2009;182(5):2132–6.  https://doi.org/10.1016/j.juro.2009.07.019.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Patard JJ, Leray E, Rioux-Leclercq N, Cindolo L, Ficarra V, Zisman A, et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol. 2005;23(12):2763–71.  https://doi.org/10.1200/JCO.2005.07.055.PubMedCrossRefGoogle Scholar
  21. 21.
    Delahunt B, Eble JN, McCredie MR, Bethwaite PB, Stewart JH, Bilous AM. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol. 2001;32(6):590–5.  https://doi.org/10.1053/hupa.2001.24984.PubMedCrossRefGoogle Scholar
  22. 22.
    Cheville JC, Lohse CM, Zincke H, Weaver AL, Leibovich BC, Frank I, et al. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of associations with patient outcome. Am J Surg Pathol. 2004;28(4):435–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Klatte T, Streubel B, Wrba F, Remzi M, Krammer B, de Martino M, et al. Renal cell carcinoma associated with transcription factor E3 expression and Xp11.2 translocation: incidence, characteristics, and prognosis. Am J Clin Pathol. 2012;137(5):761–8.  https://doi.org/10.1309/AJCPQ6LLFMC4OXGC.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim HL, Belldegrun AS, Freitas DG, Bui MH, Han KR, Dorey FJ, et al. Paraneoplastic signs and symptoms of renal cell carcinoma: implications for prognosis. J Urol. 2003;170(5):1742–6.  https://doi.org/10.1097/01.ju.0000092764.81308.6a.PubMedCrossRefGoogle Scholar
  25. 25.
    Kattan MW, Reuter V, Motzer RJ, Katz J, Russo P. A postoperative prognostic nomogram for renal cell carcinoma. J Urol. 2001;166(1):63–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Sorbellini M, Kattan MW, Snyder ME, Reuter V, Motzer R, Goetzl M, et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol. 2005;173(1):48–51.  https://doi.org/10.1097/01.ju.0000148261.19532.2c.PubMedCrossRefGoogle Scholar
  27. 27.
    Zisman A, Pantuck AJ, Wieder J, Chao DH, Dorey F, Said JW, et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol. 2002;20(23):4559–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Patard JJ, Kim HL, Lam JS, Dorey FJ, Pantuck AJ, Zisman A, et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J Clin Oncol. 2004;22(16):3316–22.  https://doi.org/10.1200/JCO.2004.09.104.PubMedCrossRefGoogle Scholar
  29. 29.
    Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol. 2002;168(6):2395–400.  https://doi.org/10.1016/S0022-5347(05)64153-5.PubMedCrossRefGoogle Scholar
  30. 30.
    Karakiewicz PI, Briganti A, Chun FK, Trinh QD, Perrotte P, Ficarra V, et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol. 2007;25(11):1316–22.  https://doi.org/10.1200/JCO.2006.06.1218.PubMedCrossRefGoogle Scholar
  31. 31.
    Isbarn H, Karakiewicz PI. Predicting cancer-control outcomes in patients with renal cell carcinoma. Curr Opin Urol. 2009;19(3):247–57.  https://doi.org/10.1097/MOU.0b013e32832a0814.PubMedCrossRefGoogle Scholar
  32. 32.
    Hew MN, Zondervan PJ, Guven S, de la Rosette J, Laguna MP. Prognostic models and factors for patients with renal-cell carcinoma: a survey on their use among urologists. J Endourol. 2013;27(6):790–9.  https://doi.org/10.1089/end.2012.0654.PubMedCrossRefGoogle Scholar
  33. 33.
    Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999;17(8):2530–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Eggener SE, Yossepowitch O, Pettus JA, Snyder ME, Motzer RJ, Russo P. Renal cell carcinoma recurrence after nephrectomy for localized disease: predicting survival from time of recurrence. J Clin Oncol. 2006;24(19):3101–6.  https://doi.org/10.1200/JCO.2005.04.8280.PubMedCrossRefGoogle Scholar
  35. 35.
    Heng DY, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol. 2013;14(2):141–8.  https://doi.org/10.1016/S1470-2045(12)70559-4.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Motzer RJ, Escudier B, Bukowski R, Rini BI, Hutson TE, Barrios CH, et al. Prognostic factors for survival in 1059 patients treated with sunitinib for metastatic renal cell carcinoma. Br J Cancer. 2013;108(12):2470–7.  https://doi.org/10.1038/bjc.2013.236.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Choueiri TK, Garcia JA, Elson P, Khasawneh M, Usman S, Golshayan AR, et al. Clinical factors associated with outcome in patients with metastatic clear-cell renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy. Cancer. 2007;110(3):543–50.  https://doi.org/10.1002/cncr.22827.PubMedCrossRefGoogle Scholar
  38. 38.
    Negrier S, Escudier B, Gomez F, Douillard JY, Ravaud A, Chevreau C, et al. Prognostic factors of survival and rapid progression in 782 patients with metastatic renal carcinomas treated by cytokines: a report from the Groupe Francais d’Immunotherapie. Ann Oncol. 2002;13(9):1460–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Manola J, Royston P, Elson P, McCormack JB, Mazumdar M, Négrier S, et al. Prognostic model for survival in patients with metastatic renal cell carcinoma: results from the International Kidney Cancer Working Group. Clin Cancer Res. 2011;17(16):5443–50.  https://doi.org/10.1158/1078-0432.CCR-11-0553.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ko JJ, Xie W, Heng DYC, Kroeger N, Lee J-L, Rini BI, et al. The International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) model as a prognostic tool in metastatic renal cell carcinoma (mRCC) patients previously treated with first-line targeted therapy (TT). J Clin Oncol. 2014;32(4_suppl):398.CrossRefGoogle Scholar
  41. 41.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27(20):3312–8.  https://doi.org/10.1200/JCO.2008.19.5511.PubMedCrossRefGoogle Scholar
  42. 42.
    Paule B, Bastien L, Deslandes E, Cussenot O, Podgorniak MP, Allory Y, et al. Soluble isoforms of vascular endothelial growth factor are predictors of response to sunitinib in metastatic renal cell carcinomas. PLoS One. 2010;5(5):e10715.  https://doi.org/10.1371/journal.pone.0010715.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Harmon CS, DePrimo SE, Figlin RA, Hudes GR, Hutson TE, Michaelson MD, et al. Circulating proteins as potential biomarkers of sunitinib and interferon-alpha efficacy in treatment-naïve patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol. 2014;73(1):151–61.  https://doi.org/10.1007/s00280-013-2333-4.PubMedCrossRefGoogle Scholar
  44. 44.
    Negrier S, Perol D, Menetrier-Caux C, Escudier B, Pallardy M, Ravaud A, et al. Interleukin-6, interleukin-10, and vascular endothelial growth factor in metastatic renal cell carcinoma: prognostic value of interleukin-6—from the Groupe Français d’Immunothérapie. J Clin Oncol. 2004;22(12):2371–8.  https://doi.org/10.1200/JCO.2004.06.121.PubMedCrossRefGoogle Scholar
  45. 45.
    Tran HT, Liu Y, Zurita AJ, Lin Y, Baker-Neblett KL, Martin AM, et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 2012;13(8):827–37.  https://doi.org/10.1016/S1470-2045(12)70241-3.PubMedCrossRefGoogle Scholar
  46. 46.
    Porta C, Paglino C, Imarisio I, Ganini C, Sacchi L, Quaglini S, et al. Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncology. 2013;84(2):115–22.  https://doi.org/10.1159/000342099.PubMedCrossRefGoogle Scholar
  47. 47.
    Garcia-Donas J, Leandro-García LJ, González Del Alba A, Morente M, Alemany I, Esteban E, et al. Prospective study assessing hypoxia-related proteins as markers for the outcome of treatment with sunitinib in advanced clear-cell renal cell carcinoma. Ann Oncol. 2013;24(9):2409–14.  https://doi.org/10.1093/annonc/mdt219.PubMedCrossRefGoogle Scholar
  48. 48.
    Terakawa T, Miyake H, Kusuda Y, Fujisawa M. Expression level of vascular endothelial growth factor receptor-2 in radical nephrectomy specimens as a prognostic predictor in patients with metastatic renal cell carcinoma treated with sunitinib. Urol Oncol. 2013;31(4):493–8.  https://doi.org/10.1016/j.urolonc.2011.02.012.PubMedCrossRefGoogle Scholar
  49. 49.
    Kusuda Y, Miyake H, Behnsawy HM, Fukuhara T, Inoue TA, Fujisawa M. Prognostic prediction in patients with metastatic renal cell carcinoma treated with sorafenib based on expression levels of potential molecular markers in radical nephrectomy specimens. Urol Oncol. 2013;31(1):42–50.  https://doi.org/10.1016/j.urolonc.2010.09.008.PubMedCrossRefGoogle Scholar
  50. 50.
    Stabile H, Mitola S, Moroni E, Belleri M, Nicoli S, Coltrini D, et al. Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor. Blood. 2007;109(5):1834–40.  https://doi.org/10.1182/blood-2006-06-032276.PubMedCrossRefGoogle Scholar
  51. 51.
    van Vlodrop IJ, Baldewijns MM, Smits KM, Schouten LJ, van Neste L, van Criekinge W, et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am J Pathol. 2010;176(2):575–84.  https://doi.org/10.2353/ajpath.2010.090442.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jonasch E, Corn P, Pagliaro LC, Warneke CL, Johnson MM, Tamboli P, et al. Upfront, randomized, phase 2 trial of sorafenib versus sorafenib and low-dose interferon alfa in patients with advanced renal cell carcinoma: clinical and biomarker analysis. Cancer. 2010;116(1):57–65.  https://doi.org/10.1002/cncr.24685.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Tsavachidou-Fenner D, Tannir N, Tamboli P, Liu W, Petillo D, Teh B, et al. Gene and protein expression markers of response to combined antiangiogenic and epidermal growth factor targeted therapy in renal cell carcinoma. Ann Oncol. 2010;21(8):1599–606.  https://doi.org/10.1093/annonc/mdp600.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res. 2003;9(2):802–11.PubMedGoogle Scholar
  55. 55.
    Bui MH, Visapaa H, Seligson D, Kim H, Han KR, Huang Y, et al. Prognostic value of carbonic anhydrase IX and KI67 as predictors of survival for renal clear cell carcinoma. J Urol. 2004;171(6 Pt 1):2461–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Choueiri TK, Cheng S, Qu AQ, Pastorek J, Atkins MB, Signoretti S. Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2013;31(8):1788–93.  https://doi.org/10.1016/j.urolonc.2012.07.004.PubMedCrossRefGoogle Scholar
  57. 57.
    Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD, et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res. 2007;13(24):7388–93.  https://doi.org/10.1158/1078-0432.CCR-07-0411.PubMedCrossRefGoogle Scholar
  58. 58.
    Scartozzi M, Bianconi M, Faloppi L, Loretelli C, Bittoni A, Del Prete M, et al. VEGF and VEGFR polymorphisms affect clinical outcome in advanced renal cell carcinoma patients receiving first-line sunitinib. Br J Cancer. 2013;108(5):1126–32.  https://doi.org/10.1038/bjc.2012.501.PubMedCrossRefGoogle Scholar
  59. 59.
    Beuselinck B, Karadimou A, Lambrechts D, Claes B, Wolter P, Couchy G, et al. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br J Cancer. 2013;108(4):887–900.  https://doi.org/10.1038/bjc.2012.548.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Beuselinck B, Karadimou A, Lambrechts D, Claes B, Wolter P, Couchy G, et al. VEGFR1 single nucleotide polymorphisms associated with outcome in patients with metastatic renal cell carcinoma treated with sunitinib—a multicentric retrospective analysis. Acta Oncol. 2014;53(1):103–12.  https://doi.org/10.3109/0284186X.2013.770600.PubMedCrossRefGoogle Scholar
  61. 61.
    Xu CF, Bing NX, Ball HA, Rajagopalan D, Sternberg CN, Hutson TE, et al. Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes. J Clin Oncol. 2011;29(18):2557–64.  https://doi.org/10.1200/JCO.2010.32.9110.PubMedCrossRefGoogle Scholar
  62. 62.
    Rini B, Goddard A, Knezevic D, Maddala T, Zhou M, Aydin H, et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 2015;16(6):676–85.  https://doi.org/10.1016/S1470-2045(15)70167-1.PubMedCrossRefGoogle Scholar
  63. 63.
    Escudier BJ, Rini BI, Martini JF, Chang WY-H, Breza J, Magheli A, et al. Phase III trial of adjuvant sunitinib in patients with high-risk renal cell carcinoma (RCC): validation of the 16-gene Recurrence Score in stage III patients. J Clin Oncol. 2017;35(15_suppl):4508.Google Scholar
  64. 64.
    Dai J, Lu Y, Wang J, Yang L, Han Y, Wang Y, et al. A four-gene signature predicts survival in clear-cell renal-cell carcinoma. Oncotarget. 2016;7(50):82712–26.  https://doi.org/10.18632/oncotarget.12631.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhu X, Stergiopoulos K, Wu S. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48(1):9–17.  https://doi.org/10.1080/02841860802314720.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.  https://doi.org/10.1053/j.ajkd.2006.11.039.PubMedCrossRefGoogle Scholar
  67. 67.
    Jain M, Townsend RR. Chemotherapy agents and hypertension: a focus on angiogenesis blockade. Curr Hypertens Rep. 2007;9(4):320–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9(2):117–23.  https://doi.org/10.1016/S1470-2045(08)70003-2.PubMedCrossRefGoogle Scholar
  69. 69.
    Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23(24):5474–83.  https://doi.org/10.1200/JCO.2005.04.192.PubMedCrossRefGoogle Scholar
  70. 70.
    Rixe O, Bukowski RM, Michaelson MD, Wilding G, Hudes GR, Bolte O, et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 2007;8(11):975–84.  https://doi.org/10.1016/S1470-2045(07)70285-1.PubMedCrossRefGoogle Scholar
  71. 71.
    Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wickman GR, Amundson K, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14(22):7272–83.  https://doi.org/10.1158/1078-0432.CCR-08-0652.PubMedCrossRefGoogle Scholar
  72. 72.
    Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137–43.  https://doi.org/10.1200/JCO.2009.26.5561.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rixe O, Dutcher J, Motzer R, Wilding G, Stadler WM, Garrett M, et al. Diastolic blood pressure (dBP) and pharmacokinetics (PK) as predictors of axitinib efficacy in metastatic renal cell cancer (mRCC). J Clin Oncol. 2009;27(15_suppl):5045. Meeting abstractsGoogle Scholar
  74. 74.
    Rini BI, Wilding G, Hudes G, Stadler WM, Kim S, Tarazi J, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27(27):4462–8.  https://doi.org/10.1200/JCO.2008.21.7034.PubMedCrossRefGoogle Scholar
  75. 75.
    Schiller JH, Larson T, Ou SH, Limentani S, Sandler A, Vokes E, et al. Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a phase II study. J Clin Oncol. 2009;27(23):3836–41.  https://doi.org/10.1200/JCO.2008.20.8355.PubMedCrossRefGoogle Scholar
  76. 76.
    Fruehauf J, Lutzky J, McDermott D, Brown CK, Meric JB, Rosbrook B, et al. Multicenter, phase II study of axitinib, a selective second-generation inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, in patients with metastatic melanoma. Clin Cancer Res. 2011;17(23):7462–9.  https://doi.org/10.1158/1078-0432.CCR-11-0534.PubMedCrossRefGoogle Scholar
  77. 77.
    Mukku VR. Regulation of epidermal growth factor receptor levels by thyroid hormone. J Biol Chem. 1984;259(10):6543–7.PubMedGoogle Scholar
  78. 78.
    Rini BI, Schiller JH, Fruehauf JP, Cohen EE, Tarazi JC, Rosbrook B, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res. 2011;17(11):3841–9.  https://doi.org/10.1158/1078-0432.CCR-10-2806.PubMedCrossRefGoogle Scholar
  79. 79.
    Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708–13.  https://doi.org/10.1200/JCO.2007.15.9566.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wolf M, Ingbar SH, Moses AC. Thyroid hormone and growth hormone interact to regulate insulin-like growth factor-I messenger ribonucleic acid and circulating levels in the rat. Endocrinology. 1989;125(6):2905–14.  https://doi.org/10.1210/endo-125-6-2905.PubMedCrossRefGoogle Scholar
  81. 81.
    Trentin AG, Alvarez-Silva M, Moura Neto V. Thyroid hormone induces cerebellar astrocytes and C6 glioma cells to secrete mitogenic growth factors. Am J Physiol Endocrinol Metab. 2001;281(5):E1088–94.PubMedCrossRefGoogle Scholar
  82. 82.
    Seidel C, Busch J, Weikert S, Steffens S, Fenner M, Ganser A, et al. Progression free survival of first line vascular endothelial growth factor-targeted therapy is an important prognostic parameter in patients with metastatic renal cell carcinoma. Eur J Cancer. 2012;48(7):1023–30.  https://doi.org/10.1016/j.ejca.2012.02.048.PubMedCrossRefGoogle Scholar
  83. 83.
    Heng DY, Xie W, Bjarnason GA, Vaishampayan U, Tan MH, Knox J, et al. Progression-free survival as a predictor of overall survival in metastatic renal cell carcinoma treated with contemporary targeted therapy. Cancer. 2011;117(12):2637–42.  https://doi.org/10.1002/cncr.25750.PubMedCrossRefGoogle Scholar
  84. 84.
    Al-Marrawi MY, Rini BI, Harshman LC, Bjarnason G, Wood L, Vaishampayan U, et al. The association of clinical outcome to first-line VEGF-targeted therapy with clinical outcome to second-line VEGF-targeted therapy in metastatic renal cell carcinoma patients. Target Oncol. 2013;8(3):203–9.  https://doi.org/10.1007/s11523-012-0252-7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Krajewski KM, Franchetti Y, Nishino M, Fay AP, Ramaiya N, Van den Abbeele AD, et al. 10% Tumor diameter shrinkage on the first follow-up computed tomography predicts clinical outcome in patients with advanced renal cell carcinoma treated with angiogenesis inhibitors: a follow-up validation study. Oncologist. 2014;19(5):507–14.  https://doi.org/10.1634/theoncologist.2013-0391.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Smith AD, Lieber ML, Shah SN. Assessing tumor response and detecting recurrence in metastatic renal cell carcinoma on targeted therapy: importance of size and attenuation on contrast-enhanced CT. AJR Am J Roentgenol. 2010;194(1):157–65.  https://doi.org/10.2214/AJR.09.2941.PubMedCrossRefGoogle Scholar
  87. 87.
    Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM. Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol. 2010;194(6):1470–8.  https://doi.org/10.2214/AJR.09.3456.PubMedCrossRefGoogle Scholar
  88. 88.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81.  https://doi.org/10.1056/NEJMoa066838.PubMedCrossRefGoogle Scholar
  89. 89.
    Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.  https://doi.org/10.1016/S0140-6736(08)61039-9.PubMedCrossRefGoogle Scholar
  90. 90.
    Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci U S A. 2011;108(37):15201–6.  https://doi.org/10.1073/pnas.1103746108.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Xu J, Dang Y, Ren YR, Liu JO. Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc Natl Acad Sci U S A. 2010;107(10):4764–9.  https://doi.org/10.1073/pnas.0910872107.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Garcia-Donas J, Rodriguez-Moreno JF, Romero-Laorden N, Rodriguez-Antona C. Renal carcinoma pharmacogenomics and predictors of response: steps toward treatment individualization. Urol Oncol. 2015;33(4):179–86.  https://doi.org/10.1016/j.urolonc.2013.09.015.PubMedCrossRefGoogle Scholar
  93. 93.
    Garcia-Donas J, Rodriguez-Antona C, Jonasch E. Molecular markers to predict response to therapy. Semin Oncol. 2013;40(4):444–58.  https://doi.org/10.1053/j.seminoncol.2013.05.005.PubMedCrossRefGoogle Scholar
  94. 94.
    Funakoshi T, Lee CH, Hsieh JJ. A systematic review of predictive and prognostic biomarkers for VEGF-targeted therapy in renal cell carcinoma. Cancer Treat Rev. 2014;40(4):533–47.  https://doi.org/10.1016/j.ctrv.2013.11.008.PubMedCrossRefGoogle Scholar
  95. 95.
    Maroto P, Rini B. Molecular biomarkers in advanced renal cell carcinoma. Clin Cancer Res. 2014;20(8):2060–71.  https://doi.org/10.1158/1078-0432.CCR-13-1351.PubMedCrossRefGoogle Scholar
  96. 96.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.  https://doi.org/10.1056/NEJMoa1113205.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33.  https://doi.org/10.1038/ng.2891.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol. 2014;32(18):1968–76.  https://doi.org/10.1200/JCO.2012.45.2003.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mancuso A, Di Paola ED, Leone A, Catalano A, Calabrò F, Cerbone L, et al. Phase II escalation study of sorafenib in patients with metastatic renal cell carcinoma who have been previously treated with anti-angiogenic treatment. BJU Int. 2012;109(2):200–6.  https://doi.org/10.1111/j.1464-410X.2011.10421.x.PubMedCrossRefGoogle Scholar
  100. 100.
    Maroto P, Esteban E, Fernández-Parra E, Méndez-Vidal MJ, Domenech M, León L, et al. C-Myc as a new predictive biomarker for sunitinib in metastatic renal clear cell carcinoma. European Society for Medical Oncology (ESMO) Congress. 2012;28(Suppl), 832 pp.Google Scholar
  101. 101.
    Choueiri TK, Regan MM, Rosenberg JE, Oh WK, Clement J, Amato AM, et al. Carbonic anhydrase IX and pathological features as predictors of outcome in patients with metastatic clear-cell renal cell carcinoma receiving vascular endothelial growth factor-targeted therapy. BJU Int. 2010;106(6):772–8.  https://doi.org/10.1111/j.1464-410X.2010.09218.x.PubMedCrossRefGoogle Scholar
  102. 102.
    Choueiri TK, Fay AP, Gagnon R, Lin Y, Bahamon B, Brown V, et al. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2013;19(18):5218–26.  https://doi.org/10.1158/1078-0432.CCR-13-0491.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Muriel López C, Esteban E, Berros JP, Pardo P, Astudillo A, Izquierdo M, et al. Prognostic factors in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2012;10(4):262–70.  https://doi.org/10.1016/j.clgc.2012.06.005.PubMedCrossRefGoogle Scholar
  104. 104.
    Stewart GD, O’Mahony FC, Laird A, Rashid S, Martin SA, Eory L, et al. Carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. Eur Urol. 2014;66(5):956–63.  https://doi.org/10.1016/j.eururo.2014.04.007.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Saez MI, Trigo Perez JM, Perez-Rivas LG, Perez-Villa L, Villatoro R, Montesa A, et al. Hypoxia-inducible factor (HIF) 1α and 2α as predictive markers of outcome to VEGFR tyrosine kinase inhibitors (TKI) in renal cell carcinoma (RCC). J Clin Oncol. 2012;30(15_suppl):4630.Google Scholar
  106. 106.
    Choueiri TK, Vaziri SA, Jaeger E, Elson P, Wood L, Bhalla IP, et al. von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J Urol. 2008;180(3):860–5; discussion 865–6.  https://doi.org/10.1016/j.juro.2008.05.015.PubMedCrossRefGoogle Scholar
  107. 107.
    Peña C, Lathia C, Shan M, Escudier B, Bukowski RM. Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III Treatment Approaches in Renal Cancer Global Evaluation Trial. Clin Cancer Res. 2010;16(19):4853–63.  https://doi.org/10.1158/1078-0432.CCR-09-3343.PubMedCrossRefGoogle Scholar
  108. 108.
    Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M, et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2007;5(6):379–85.  https://doi.org/10.3816/CGC.2007.n.020.PubMedCrossRefGoogle Scholar
  109. 109.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.  https://doi.org/10.1038/nature12222.
  110. 110.
    Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45(8):860–7.  https://doi.org/10.1038/ng.2699.PubMedCrossRefGoogle Scholar
  111. 111.
    Kucejova B, Peña-Llopis S, Yamasaki T, Sivanand S, Tran TA, Alexander S, et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res. 2011;9(9):1255–65.  https://doi.org/10.1158/1541-7786.MCR-11-0302.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20(7):1955–64.  https://doi.org/10.1158/1078-0432.CCR-13-2345.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Fay AP, Kwiatkowski DJ, Gray KP, Thorner A, Rini BI, Agarwal N, et al. Activating genomic mutations in the mTOR pathway to predict responses to everolimus and temsirolimus in patients with metastatic renal cell carcinoma (mRCC): results from a large multi-institutional cohort. J Clin Oncol. 2015;33(15_suppl):4519.Google Scholar
  114. 114.
    Figlin RA, de Souza P, McDermott D, Dutcher JP, Berkenblit A, Thiele A, et al. Analysis of PTEN and HIF-1alpha and correlation with efficacy in patients with advanced renal cell carcinoma treated with temsirolimus versus interferon-alpha. Cancer. 2009;115(16):3651–60.  https://doi.org/10.1002/cncr.24438.PubMedCrossRefGoogle Scholar
  115. 115.
    DePrimo SE, Bello CL, Smeraglia J, Baum CM, Spinella D, Rini BI, et al. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med. 2007;5:32.  https://doi.org/10.1186/1479-5876-5-32.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Tomita Y, Uemura H, Fujimoto H, Kanayama HO, Shinohara N, Nakazawa H, et al. Key predictive factors of axitinib (AG-013736)-induced proteinuria and efficacy: a phase II study in Japanese patients with cytokine-refractory metastatic renal cell carcinoma. Eur J Cancer. 2011;47(17):2592–602.  https://doi.org/10.1016/j.ejca.2011.07.014.PubMedCrossRefGoogle Scholar
  117. 117.
    Gigante M, Li G, Ferlay C, Perol D, Blanc E, Paul S, et al. Prognostic value of serum CA9 in patients with metastatic clear cell renal cell carcinoma under targeted therapy. Anticancer Res. 2012;32(12):5447–51.PubMedGoogle Scholar
  118. 118.
    Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8.  https://doi.org/10.1200/JCO.2009.23.9764.PubMedCrossRefGoogle Scholar
  119. 119.
    Nixon AB, Halabi S, Shterev I, Starr M, Brady JC, Dutcher JP, et al. Identification of predictive biomarkers of overall survival (OS) in patients (pts) with advanced renal cell carcinoma (RCC) treated with interferon alpha (I) with or without bevacizumab (B): results from CALGB 90206 (Alliance). J Clin Oncol. 2013;31(15_suppl):4520.Google Scholar
  120. 120.
    Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 2010;70(3):1063–71.  https://doi.org/10.1158/0008-5472.CAN-09-3965.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Gruenwald V, Beutel G, Schuch-Jantsch S, Reuter C, Ivanyi P, Ganser A, et al. Circulating endothelial cells are an early predictor in renal cell carcinoma for tumor response to sunitinib. BMC Cancer. 2010;10:695.  https://doi.org/10.1186/1471-2407-10-695.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Rini BI, Michaelson MD, Rosenberg JE, Bukowski RM, Sosman JA, Stadler WM, et al. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J Clin Oncol. 2008;26(22):3743–8.  https://doi.org/10.1200/JCO.2007.15.5416.PubMedCrossRefGoogle Scholar
  123. 123.
    Kontovinis LF, Papazisis KT, Touplikioti P, Andreadis C, Mouratidou D, Kortsaris AH. Sunitinib treatment for patients with clear-cell metastatic renal cell carcinoma: clinical outcomes and plasma angiogenesis markers. BMC Cancer. 2009;9:82.  https://doi.org/10.1186/1471-2407-9-82.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hutson TE, Davis ID, Machiels JH, de Souza PL, Baker K, Bordogna W, et al. Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with pazopanib (GW786034), a multi-kinase angiogenesis inhibitor. J Clin Oncol. 2008;26(15_suppl):5046.CrossRefGoogle Scholar
  125. 125.
    Zurita AJ, Jonasch E, Wang X, Khajavi M, Yan S, Du DZ, et al. A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma. Ann Oncol. 2012;23(1):46–52.  https://doi.org/10.1093/annonc/mdr047.PubMedCrossRefGoogle Scholar
  126. 126.
    Liu Y, Tran HT, Lin Y, Martin A, Zurita AJ, Sternberg CN, et al. Plasma cytokine and angiogenic factors (CAFs) predictive of clinical benefit and prognosis in patients (Pts) with advanced or metastatic renal cell cancer (mRCC) treated in phase III trials of pazopanib (PAZO). J Clin Oncol. 2011;29(7_suppl):334.CrossRefGoogle Scholar
  127. 127.
    Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28(3):475–80.  https://doi.org/10.1200/JCO.2008.21.6994.PubMedCrossRefGoogle Scholar
  128. 128.
    Perez-Gracia JL, Prior C, Guillén-Grima F, Segura V, Gonzalez A, Panizo A, et al. Identification of TNF-alpha and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array. Br J Cancer. 2009;101(11):1876–83.  https://doi.org/10.1038/sj.bjc.6605409.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yann-Alexandre V, Beuselinck B, Wolter P, Teghom C, Philip D, Karadimou A, et al. Prognostic impact of baseline serum C-reactive protein in metastatic renal cell carcinoma treated with sunitinib. J Clin Oncol. 2013;31(6_suppl):425.CrossRefGoogle Scholar
  130. 130.
    Gámez-Pozo A, Antón-Aparicio LM, Bayona C, Borrega P, Gallegos Sancho MI, García-Domínguez R, et al. MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia. 2012;14(12):1144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, van Erp NP, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res. 2011;17(3):620–9.  https://doi.org/10.1158/1078-0432.CCR-10-1828.PubMedCrossRefGoogle Scholar
  132. 132.
    Garcia-Donas J, Esteban E, Leandro-García LJ, Castellano DE, del Alba AG, Climent MA, et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 2011;12(12):1143–50.  https://doi.org/10.1016/S1470-2045(11)70266-2.PubMedCrossRefGoogle Scholar
  133. 133.
    Feng G, Ye X, Fang F, Pu C, Huang H, Li G. Quantification of plasma cell-free DNA1 in predicting therapeutic efficacy of sorafenib on metastatic clear cell renal cell carcinoma. Dis Markers. 2013;34(2):105–11.  https://doi.org/10.3233/DMA-120950.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.  https://doi.org/10.1038/nm1052.PubMedCrossRefGoogle Scholar
  135. 135.
    Armstrong AJ, George DJ, Halabi S. Serum lactate dehydrogenase predicts for overall survival benefit in patients with metastatic renal cell carcinoma treated with inhibition of mammalian target of rapamycin. J Clin Oncol. 2012;30(27):3402–7.  https://doi.org/10.1200/JCO.2011.40.9631.PubMedCrossRefGoogle Scholar
  136. 136.
    Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, et al. Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A. 2004;101(49):17174–9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Frigola X, Inman BA, Lohse CM, Krco CJ, Cheville JC, Thompson RH, et al. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin Cancer Res. 2011;17(7):1915–23.  https://doi.org/10.1158/1078-0432.CCR-10-0250.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Choueiri TK, Fay AP, Gray KP, Callea M, Ho TH, Albiges L, et al. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann Oncol. 2014;25(11):2178–84.  https://doi.org/10.1093/annonc/mdu445.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Iacovelli R, Nolè F, Verri E, Renne G, Paglino C, Santoni M, et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol. 2016;11(2):143–8.  https://doi.org/10.1007/s11523-015-0392-7.PubMedCrossRefGoogle Scholar
  141. 141.
    Callea M, Albiges L, Gupta M, Cheng SC, Genega EM, Fay AP, et al. Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol Res. 2015;3(10):1158–64.  https://doi.org/10.1158/2326-6066.CIR-15-0043.
  142. 142.
    Shin SJ, Jeon YK, Cho YM, Lee JL, Chung DH, Park JY, et al. The association between PD-L1 expression and the clinical outcomes to vascular endothelial growth factor-targeted therapy in patients with metastatic clear cell renal cell carcinoma. Oncologist. 2015;20(11):1253–60.  https://doi.org/10.1634/theoncologist.2015-0151.
  143. 143.
    Choueiri TK, Figueroa DJ, Fay AP, Signoretti S, Liu Y, Gagnon R, et al. Correlation of PD-L1 tumor expression and treatment outcomes in patients with renal cell carcinoma receiving sunitinib or pazopanib: results from COMPARZ, a randomized controlled trial. Clin Cancer Res. 2015;21(5):1071–7.  https://doi.org/10.1158/1078-0432.CCR-14-1993.PubMedCrossRefGoogle Scholar
  144. 144.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.  https://doi.org/10.1056/NEJMoa1510665.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vall d’Hebron University Hospital and Institute of OncologyUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Oncology DepartmentHospital Universitary Mútua TerrassaTerrassa, BarcelonaSpain
  3. 3.Oncology DepartmentHospital de GranollersGranollers, BarcelonaSpain
  4. 4.Oncology Department, Institut Català d’OncologiaHospital Germans Trias i PujolBadalona, BarcelonaSpain
  5. 5.Oncology DepartmentHospital del MarBarcelonaSpain
  6. 6.IMIM (Hospital del Mar, Medical Research Institute)BarcelonaSpain
  7. 7.Oncology DepartmentInstitut Català d’Oncologia, Hospital Josep TruetaGironaSpain
  8. 8.Oncology DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de BarcelonaSabadellSpain
  9. 9.Hospital Universitari Parc TaulíSabadell, BarcelonaSpain

Personalised recommendations