Skip to main content
Log in

Study on mouse model of triple-negative breast cancer: association between higher parity and triple-negative breast cancer

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

To investigate the association between high parity and triple-negative breast cancer (TNBC), and explore the etiologic mechanisms of TNBC in Tientsin Albinao 2 (TA2) mice model. After the TA2 mice model with high parity and TNBC had been established, the cell proliferation and apoptosis were detected by immunohistochemical and TUNEL staining in mammary epithelia from different conditions, which included non-pregnancy, low and high gravidity in pregnancy, and carcinogenesis. Apoptotic signaling was analyzed by measuring bcl-2, bax, caspase-3, and caspase-9 expression using immunohistochemistry (IHC), western blot, and real-time PCR technique. Estrogen receptor α (ERα) and progesterone receptor (PR) were determined by immunohistochemical staining and real-time PCR. Both proliferation and apoptosis in mammary epithelia changed with the increasing of parity. Immunohistochemistry revealed increased cell proliferation and apoptosis were related with upregulation of ERα, PR, bcl-2, bax, caspase-3, and caspase-9 expression, especially during the fourth pregnancy. Mammary gland in the fourth pregnancy stage was the closest to precancerous. In precancerous mammary gland, cell proliferation rate was much higher than apoptosis rate. High parity could increase the ovarian hormones level and alter ovarian hormone receptor levels in TA2 mice, and their sensitivity to ovarian hormones result in the imbalance between cell proliferation and apoptosis in precancerous mammary epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lecarpentier J, Nogues C, Mouret-Fourme E, Gauthier-Villars M, Lasset C, Fricker JP, Caron O, Stoppa-Lyonnet D, Berthet P, Faivre L, Bonadona V, Buecher B, Coupier I, Gladieff L, Gesta P, Eisinger F, Frenay M, Luporsi E, Lortholary A, Colas C, Dugast C, Longy M, Pujol P, Tinat J, Genepso LR, Andrieu N (2012) Variation in breast cancer risk associated with factors related to pregnancies according to truncating mutation location, in the French National BRCA1 and BRCA2 mutations carrier cohort (GENEPSO). Breast Cancer Res BCR 14(4):R99. doi:10.1186/bcr3218

    Article  Google Scholar 

  2. Albrektsen G, Heuch I, Thoresen SO (2010) Histological type and grade of breast cancer tumors by parity, age at birth, and time since birth: a register-based study in Norway. BMC Cancer 10:226. doi:10.1186/1471-2407-10-226

    Article  PubMed Central  PubMed  Google Scholar 

  3. Russo J, Russo IH (1994) Toward a physiological approach to breast cancer prevention. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 3(4):353–364

    CAS  Google Scholar 

  4. Britt K, Ashworth A, Smalley M (2007) Pregnancy and the risk of breast cancer. Endocrine-related cancer 14(4):907–933. doi:10.1677/ERC-07-0137

    Article  CAS  PubMed  Google Scholar 

  5. Ginestier C, Wicha MS (2007) Mammary stem cell number as a determinate of breast cancer risk. Breast cancer research : BCR 9(4):109. doi:10.1186/bcr1741

    Article  PubMed Central  PubMed  Google Scholar 

  6. Palmer JR, Wise LA, Horton NJ, Adams-Campbell LL, Rosenberg L (2003) Dual effect of parity on breast cancer risk in African-American women. J Natl Cancer Inst 95(6):478–483

    Article  PubMed  Google Scholar 

  7. Gilani GM, Kamal S (2004) Risk factors for breast cancer in Pakistani women aged less than 45 years. Ann Hum Biol 31(4):398–407. doi:10.1080/0301446042000226763

    Article  PubMed  Google Scholar 

  8. Palmer JR, Boggs DA, Wise LA, Ambrosone CB, Adams-Campbell LL, Rosenberg L (2011) Parity and lactation in relation to estrogen receptor negative breast cancer in African American women. Cancer Epidemiol Biomarkers Prev 20(9):1883–1891. doi:10.1158/1055-9965.EPI-11-0465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lara-Medina F, Perez-Sanchez V, Saavedra-Perez D, Blake-Cerda M, Arce C, Motola-Kuba D, Villarreal-Garza C, Gonzalez-Angulo AM, Bargallo E, Aguilar JL, Mohar A, Arrieta O (2011) Triple-negative breast cancer in Hispanic patients: high prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer 117(16):3658–3669. doi:10.1002/cncr.25961

    Article  PubMed  Google Scholar 

  10. Dawood S (2010) Triple-negative breast cancer: epidemiology and management options. Drugs 70(17):2247–2258. doi:10.2165/11538150-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  11. Shinde SS, Forman MR, Kuerer HM, Yan K, Peintinger F, Hunt KK, Hortobagyi GN, Pusztai L, Symmans WF (2010) Higher parity and shorter breastfeeding duration: association with triple-negative phenotype of breast cancer. Cancer 116(21):4933–4943. doi:10.1002/cncr.25443

    Article  PubMed  Google Scholar 

  12. Huang H (1982) Spontaneous breast cancer of TA2. Tianjin Med J 6:345

    Google Scholar 

  13. Sun B, Zhang S, Zhang D, Li Y, Zhao X, Luo Y, Guo Y (2008) Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 14(21):7050–7059. doi:10.1158/1078-0432.CCR-08-0520

    Article  CAS  Google Scholar 

  14. Zhu YZS, Jia XH, Liu FY, Li Y, Wang X, Sun BC (2007) Pathologic characteristic of spontaneous breast cancer in TA mice. Tianjin Yi Ke Da Xue Xue Bao 13:149–150

    Google Scholar 

  15. Zhang S, Zhang D, Zhu Y, Guo H, Zhao X, Sun B (2006) Clusterin expression and univariate analysis of overall survival in human breast cancer. Technol Cancer Res Treat 5(6):573–578

    Article  CAS  PubMed  Google Scholar 

  16. Cui YFXS, Gu YJ, Zhang DF, Zhang SW, Sun BC (2009) Effects of FGF-1 and FGFR1 on the genesis of spontaneous breast cancer in TA2 mice. Chin J Clin Oncol 36:168–171

    CAS  Google Scholar 

  17. Wang X, Huang C, Sun B, Gu Y, Cui Y, Zhao X, Li Y, Zhang S (2010) The effect of high gravidity on the carcinogenesis of mammary gland in TA2 mice. Am J Reprod Immunol 63(5):396–409. doi:10.1111/j.1600-0897.2009.00807.x

    Article  CAS  PubMed  Google Scholar 

  18. Visvader JE, Lindeman GJ (2003) Transcriptional regulators in mammary gland development and cancer. Int J Biochem Cell Biol 35(7):1034–1051

    Article  CAS  PubMed  Google Scholar 

  19. Herrmann JL, Bruckheimer E, McDonnell TJ (1996) Cell death signal transduction and Bcl-2 function. Biochem Soc Trans 24(4):1059–1065

    CAS  PubMed  Google Scholar 

  20. Kumar R, Vadlamudi RK, Adam L (2000) Apoptosis in mammary gland and cancer. Endocr-Relat Cancer 7(4):257–269

    Article  CAS  PubMed  Google Scholar 

  21. Reed JC (1996) Balancing cell life and death: bax, apoptosis, and breast cancer. The Journal of Clin Investig 97(11):2403–2404. doi:10.1172/JCI118684

    Article  CAS  Google Scholar 

  22. Olsson H, Jernstrom H, Alm P, Kreipe H, Ingvar C, Jonsson PE, Ryden S (1996) Proliferation of the breast epithelium in relation to menstrual cycle phase, hormonal use, and reproductive factors. Breast Cancer Res Treat 40(2):187–196

    Article  CAS  PubMed  Google Scholar 

  23. Meier-Abt F, Bentires-Alj M (2014) How pregnancy at early age protects against breast cancer. Trends Mol Med 20(3):143–153. doi:10.1016/j.molmed.2013.11.002

    Article  PubMed  Google Scholar 

  24. Meier-Abt F, Milani E, Roloff T, Brinkhaus H, Duss S, Meyer DS, Klebba I, Balwierz PJ, van Nimwegen E, Bentires-Alj M (2013) Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Res: BCR 15(2):R36. doi:10.1186/bcr3419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Todorovic R, Devanesan P, Higginbotham S, Zhao J, Gross ML, Rogan EG, Cavalieri EL (2001) Analysis of potential biomarkers of estrogen-initiated cancer in the urine of Syrian golden hamsters treated with 4-hydroxyestradiol. Carcinogenesis 22(6):905–911

    Article  CAS  PubMed  Google Scholar 

  26. Clarke RB (2004) Human breast cell proliferation and its relationship to steroid receptor expression. Climacteric J Int Menopause Soc 7(2):129–137

    Article  CAS  Google Scholar 

  27. Gompel A, Somai S, Chaouat M, Kazem A, Kloosterboer HJ, Beusman I, Forgez P, Mimoun M, Rostene W (2000) Hormonal regulation of apoptosis in breast cells and tissues. Steroids 65(10–11):593–598

    Article  CAS  PubMed  Google Scholar 

  28. Diaz-Cruz ES, Furth PA (2010) Deregulated estrogen receptor alpha and p53 heterozygosity collaborate in the development of mammary hyperplasia. Cancer Res 70(10):3965–3974. doi:10.1158/0008-5472.CAN-09-3450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Feuerhake F, Sigg W, Hofter EA, Unterberger P, Welsch U (2003) Cell proliferation, apoptosis, and expression of Bcl-2 and Bax in non-lactating human breast epithelium in relation to the menstrual cycle and reproductive history. Breast Cancer Res Treat 77(1):37–48

    Article  CAS  PubMed  Google Scholar 

  30. Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391(6666):496–499. doi:10.1038/35160

    Article  CAS  PubMed  Google Scholar 

  31. Luna-More S, Weil B, Bautista D, Garrido E, Florez P, Martinez C (2004) Bcl-2 protein in normal, hyperplastic and neoplastic breast tissues. A metabolite of the putative stem-cell subpopulation of the mammary gland. Histol Histopathol 19(2):457–463

    CAS  PubMed  Google Scholar 

  32. Guzman RC, Yang J, Rajkumar L, Thordarson G, Chen X, Nandi S (1999) Hormonal prevention of breast cancer: mimicking the protective effect of pregnancy. Proc Natl Acad Sci U S A 96(5):2520–2525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Davis T, Kennedy C, Chiew YE, Clarke CL, deFazio A (2000) Histone deacetylase inhibitors decrease proliferation and modulate cell cycle gene expression in normal mammary epithelial cells. Clin Cancer Res Off J Am Assoc Cancer Res 6(11):4334–4342

    CAS  Google Scholar 

  34. Bagheri-Yarmand R, Talukder AH, Wang RA, Vadlamudi RK, Kumar R (2004) Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development 131(14):3469–3479. doi:10.1242/dev.01213

    Article  CAS  PubMed  Google Scholar 

  35. Proietti C, Salatino M, Rosemblit C, Carnevale R, Pecci A, Kornblihtt AR, Molinolo AA, Frahm I, Charreau EH, Schillaci R, Elizalde PV (2005) Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol Cell Biol 25(12):4826–4840. doi:10.1128/MCB.25.12.4826-4840.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lawson JS, Field AS, Champion S, Tran D, Ishikura H, Trichopoulos D (1999) Low oestrogen receptor alpha expression in normal breast tissue underlies low breast cancer incidence in Japan. Lancet 354(9192):1787–1788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Immunology, Tianjin Cancer Institute for their technical assistance. We also thank the Experimental Animal Center at Tianjin Medical University for providing experimental animals. This work was supported by a grant This work was supported by a grant from the National Natural Science Foundation of China (no. 81372467).

Conflict of interest

The authors declare there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Wang or Baocun Sun.

Additional information

Chun Huang and Xuan Wang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wang, X., Sun, B. et al. Study on mouse model of triple-negative breast cancer: association between higher parity and triple-negative breast cancer. Targ Oncol 10, 85–97 (2015). https://doi.org/10.1007/s11523-014-0316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0316-y

Keyword

Navigation