Advertisement

A high-fidelity 3D S-FEM stress analysis of a highly heterogeneous swine skull

  • S. H. Huo
  • C. JiangEmail author
  • X. Cui
  • G. R. Liu
Original Article

Abstract

Fracture healing and growth of the bones are highly related to the stress level. Numerical analysis of stresses is the most effective means to determine the stress level, but it usually requires sufficient resolution to ensure an accurate description of geometry features of bones. In this paper, high-fidelity smoothed finite element method (S-FEM) skull models are created using computed tomography (CT) and micro-computed tomography (μCT) images of a juvenile pig skull. The material properties of the heterogeneous bone are modeled by a varying distribution of Young’s modulus mapped to each element and smoothing domain to accurately capture the high heterogeneity. Different types of S-FEM models, including node-based, edge-based, and face-based, are developed for this high-fidelity modeling work. It is found that S-FEM has higher accuracy, in terms of displacements, stresses, and strain energy, compared to the traditional finite element method (FEM).

Graphical abstract

Keywords

Finite element method Smoothed finite element method Swine skull Stress analysis μCT scans Biomechanics 

Notes

Funding information

This work is supported by the National Natural Science Foundation of China (Grant No. 11832011) and Science Foundation of Hunan Province (Grant No. 2019jj50790).

References

  1. 1.
    Liu GR, Quek SS (2013) The finite element method: a practical course. Butterworth-Heinemann, OxfordGoogle Scholar
  2. 2.
    Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics. Butterworth-heinemannGoogle Scholar
  3. 3.
    Strait DS, Wang Q, Dechow PC, Ross CF, Richmond BG, Spencer MA, Patel BA (2005) Modeling elastic properties in finite-element analysis: how much precision is needed to produce an accurate model? The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists 283A(2):275–287.  https://doi.org/10.1002/ar.a.20172 CrossRefGoogle Scholar
  4. 4.
    Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R (1999) Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech 32(2):165–173.  https://doi.org/10.1016/s0021-9290(98)00150-x CrossRefPubMedGoogle Scholar
  5. 5.
    Liao S-H, Tong R-F, Dong J-X (2008) Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput Med Imaging Graph 32(1):53–60.  https://doi.org/10.1016/j.compmedimag.2007.09.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Fazzalari NL (2011) Bone fracture and bone fracture repair. Osteoporos Int 22(6):2003–2006.  https://doi.org/10.1007/s00198-011-1611-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Charoenpong H, Osathanon T, Pavasant P, Limjeerajarus N, Keawprachum B, Limjeerajarus CN, Cheewinthamrongrod V, Palaga T, Lertchirakarn V, Ritprajak P (2019) Mechanical stress induced S100A7 expression in human dental pulp cells to augment osteoclast differentiation. Oral Dis 25(3):812–821.  https://doi.org/10.1111/odi.13033 CrossRefPubMedGoogle Scholar
  8. 8.
    Curtis N, Kupczik K, O’higgins P, Moazen M, Fagan M (2008) Predicting skull loading: applying multibody dynamics analysis to a macaque skull. Anat Rec 291(5):491–501.  https://doi.org/10.1002/ar.20689 CrossRefGoogle Scholar
  9. 9.
    Panagiotopoulou O, Kupczik K, Cobb SN (2011) The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis. J Anat 218(1):75–86.  https://doi.org/10.1111/j.1469-7580.2010.01257.x CrossRefPubMedGoogle Scholar
  10. 10.
    Langenbach G, Zhang F, Herring S, Hannam A (2002) Modelling the masticatory biomechanics of a pig. J Anat 201(5):383–393.  https://doi.org/10.1046/j.0021-8782.2002.00108.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bright JA, Rayfield EJ (2011) Sensitivity and ex vivo validation of finite element models of the domestic pig cranium. J Anat 219(4):456–471.  https://doi.org/10.1111/j.1469-7580.2011.01408.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen J, Chen L, Chang CC, Zhang Z, Li W, Swain MV, Li Q (2017) Micro-CT based modelling for characterising injection-moulded porous titanium implants. Int J Num Meth Bio Eng 33(1):e02779.  https://doi.org/10.1002/cnm.2779 CrossRefGoogle Scholar
  13. 13.
    Tuan HS, Hutmacher DW (2005) Application of micro CT and computation modeling in bone tissue engineering. Comput Aided Des 37(11):1151–1161.  https://doi.org/10.1016/j.cad.2005.02.006 CrossRefGoogle Scholar
  14. 14.
    Schwartz-Dabney C, Dechow P (2003) Edentulation alters material properties of cortical bone in the human mandible. J Prosthet Dent 90(2):613–617.  https://doi.org/10.1016/S0022-3913(03)00165-3 CrossRefGoogle Scholar
  15. 15.
    Zhu Z (2017) Techniques for finite element modeling and remodeling of bones with applications to pig skulls. In. University of CincinnatiGoogle Scholar
  16. 16.
    Zhu Z, Jones DC, Liu GR, Soleimani S, Huang X, Shan Z, Knorr J, Caballero M, van Aalst JA (2019) Automated segmentation of swine skulls for finite element model creation using high resolution μ-CT images. I J Comp Meth 16(3):1842012.  https://doi.org/10.1142/s0219876218420124 CrossRefGoogle Scholar
  17. 17.
    Currey JD (2013) Bones: structure and mechanics. Princeton university press, PrincetonCrossRefGoogle Scholar
  18. 18.
    Bright JA, Rayfield EJ (2011) The response of cranial biomechanical finite element models to variations in mesh density. Anat Rec Adv Integr Anat Evol Biol 294(4):610–620.  https://doi.org/10.1002/ar.21358 CrossRefGoogle Scholar
  19. 19.
    Liu GR, Trung N (2016) Smoothed finite element methods. CRC press, Boca RatonCrossRefGoogle Scholar
  20. 20.
    Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3–5):803–820.  https://doi.org/10.1016/j.jsv.2006.10.035 CrossRefGoogle Scholar
  21. 21.
    Dai KY, Liu GR, Nguyen T (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem Anal Des 43(11–12):847–860.  https://doi.org/10.1016/j.finel.2007.05.009 CrossRefGoogle Scholar
  22. 22.
    Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877.  https://doi.org/10.1007/s00466-006-0075-4 CrossRefGoogle Scholar
  23. 23.
    Huo SH, Li YS, Duan SY et al (2019) Novel quadtree algorithm for adaptive analysis based on cell-based smoothed finite element method. Eng Anal Bound Elem 106:541–554.  https://doi.org/10.1016/j.enganabound.2019.06.011 CrossRefGoogle Scholar
  24. 24.
    Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71(8):902–930.  https://doi.org/10.1002/nme.1968 CrossRefGoogle Scholar
  25. 25.
    Huo SH, Liu GR, Zhang JQ et al (2019) A smoothed finite element method for octree-based polyhedral meshes with large number of hanging nodes and irregular elements. Comput Methods Appl Mech Eng:112646.  https://doi.org/10.1016/j.cma.2019.112646 CrossRefGoogle Scholar
  26. 26.
    Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466.  https://doi.org/10.1002/1097-0207(20010120)50:2<435::aid-nme32>3.0.co;2-a CrossRefGoogle Scholar
  27. 27.
    Liu GR (2009) Meshfree methods: moving beyond the finite element method. CRC press, Boca RatonCrossRefGoogle Scholar
  28. 28.
    Liu GR (2009) On G space theory. Int J Comput Methods 6(2):257–289.  https://doi.org/10.1142/s0219876209001863 CrossRefGoogle Scholar
  29. 29.
    Onishi Y, Amaya K (2014) A locking-free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems. Int J Numer Methods Eng 99(5):354–371.  https://doi.org/10.1002/nme.4684 CrossRefGoogle Scholar
  30. 30.
    Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C (2011) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Int J Numer Meth Bio Eng 27(2):198–218.  https://doi.org/10.1002/cnm.1291 CrossRefGoogle Scholar
  31. 31.
    Liu GR, Zhang GY (2008) Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int J Numer Methods Eng 74:1128–1161.  https://doi.org/10.1002/nme.2204 CrossRefGoogle Scholar
  32. 32.
    Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82:917–938.  https://doi.org/10.1002/nme.2804 CrossRefGoogle Scholar
  33. 33.
    Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Comput Methods Appl Mech Eng 198(41–44):3479–3498.  https://doi.org/10.1016/j.cma.2009.07.001 CrossRefGoogle Scholar
  34. 34.
    Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197(45–48):3883–3897.  https://doi.org/10.1016/j.cma.2008.03.011 CrossRefGoogle Scholar
  35. 35.
    Jiang C, Zhang ZQ, Liu GR, Han X, Zeng W (2015) An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues. Eng Anal Bound Elem 59:62–77.  https://doi.org/10.1016/j.enganabound.2015.04.019 CrossRefGoogle Scholar
  36. 36.
    Jiang C, Zhang ZQ, Han X, Liu GR (2014) Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. Int J Numer Methods Eng 99:587–610.  https://doi.org/10.1002/nme.4694 CrossRefGoogle Scholar
  37. 37.
    Wan DT, Hu D, Natarajan S, Bordas SP, Long T (2017) A linear smoothed quadratic finite element for the analysis of laminated composite Reissner–Mindlin plates. Compos Struct 180:395–411.  https://doi.org/10.1016/j.compstruct.2017.07.092 CrossRefGoogle Scholar
  38. 38.
    Wang G, Zeng G, Cui X et al (2019) Dispersion analysis of the gradient weighted finite element method for acoustic problems in one, two and three dimensions. Int J Numer Methods Eng 120(4):473–497.  https://doi.org/10.1002/nme.6144 CrossRefGoogle Scholar
  39. 39.
    Hao YD, Li GY, Nie X, Hu ZH, Yao W (2019) Generalized Mass-Redistributed Smoothed Finite Element Method (MR-SFEM) for Acoustic and Acoustic-Structural Interaction Problems. International Journal of Computational Methods 16(04):1850098CrossRefGoogle Scholar
  40. 40.
    Yuki Onishi, (2019) F-Bar Aided Edge-Based Smoothed Finite Element Method with 4-Node Tetrahedral Elements for Static Large Deformation Elastoplastic Problems. International Journal of Computational Methods 16(05):1840010CrossRefGoogle Scholar
  41. 41.
    Jiang C, Zhang ZQ, Han X, Liu GR, Lin T (2018) A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. Int J Numer Methods Fluids 86:20–45.  https://doi.org/10.1002/fld.4406 CrossRefGoogle Scholar
  42. 42.
    Jiang C, Yao JY, Zhang ZQ, Gao GJ, Liu GR (2018) A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids. Comput Methods Appl Mech Eng 340:24–53.  https://doi.org/10.1016/j.cma.2018.04.032 CrossRefGoogle Scholar
  43. 43.
    O’mahony AM, Williams JL, Spencer P (2001) Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 12(6):648–657.  https://doi.org/10.1034/j.1600-0501.2001.120614.x CrossRefPubMedGoogle Scholar
  44. 44.
    Harrison NM, McDonnell PF, O’Mahoney DC, Kennedy OD, O’Brien FJ, McHugh PE (2008) Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J Biomech 41(11):2589–2596.  https://doi.org/10.1016/j.jbiomech.2008.05.014 CrossRefPubMedGoogle Scholar
  45. 45.
    Wang Q, Dechow PC (2006) Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey. Am J Phys Anthropol 131(3):402–415.  https://doi.org/10.1002/ajpa.20438 CrossRefPubMedGoogle Scholar
  46. 46.
    Dechow PC, Wang Q, Peterson J (2010) Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution. Anat Rec Adv Integr Anat Evol Biol 293(4):618–629.  https://doi.org/10.1002/ar.21124 CrossRefGoogle Scholar
  47. 47.
    Dalstra M, Huiskes R, Av O, Van Erning L (1993) Mechanical and textural properties of pelvic trabecular bone. J Biomech 26(4–5):523–535.  https://doi.org/10.1016/0021-9290(93)90014-6 CrossRefPubMedGoogle Scholar
  48. 48.
    Fajardo R, Müller R (2001) Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography. Am J Phys Anthropol 115(4):327–336.  https://doi.org/10.1002/ajpa.1089 CrossRefPubMedGoogle Scholar
  49. 49.
    Speirs R (1975) Fluoride incorporation into developing enamel of permanent teeth in the domestic pig. Arch Oral Biol 20(12):877–883.  https://doi.org/10.1016/0003-9969(75)90070-9 CrossRefPubMedGoogle Scholar
  50. 50.
    Pianykh OS (2009) Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. Springer Science & Business Media, BerlinGoogle Scholar
  51. 51.
    Boskey AL (2013) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy reports 2.  https://doi.org/10.1038/bonekey.2013.181
  52. 52.
    Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59(7):954–962.  https://doi.org/10.2106/00004623-197759070-00021 CrossRefPubMedGoogle Scholar
  53. 53.
    Vanleene M, Rey C, Tho M-CHB (2008) Relationships between density and Young’s modulus with microporosity and physico-chemical properties of Wistar rat cortical bone from growth to senescence. Med Eng Phys 30(8):1049–1056.  https://doi.org/10.1016/j.medengphy.2007.12.010 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjinChina
  2. 2.Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation EngineeringCentral South UniversityChangshaChina
  3. 3.School of Mechanical EngineeringHebei University of TechnologyTianjinChina
  4. 4.Department of Aerospace Engineering and Engineering MechanicsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations