Advertisement

An automatic evaluation method for retinal image registration based on similar vessel structure matching

  • Yifan Shu
  • Yunlong Feng
  • Guannan Wu
  • Jieliang Kang
  • Huiqi LiEmail author
Original Article
  • 17 Downloads

Abstract

Registration of retinal images is significant for clinical diagnosis. Numerous methods have been proposed to evaluate registration performance. The available evaluation methods can work well in normal image pairs, but fair evaluation cannot be obtained for image pairs with anatomical changes. We propose an automatic method to quantitatively assess the registration of retinal images based on the extraction of similar vessel structures and modified Hausdorff distance. Firstly, vessel detection and skeletonization are performed to detect the vascular centerline. Secondly, the vessel segments having similar structures in the image pair are selected for assessment of registration. The bifurcation and terminal points are determined from the vascular centerline. Then, the Hungarian matching algorithm with a pruning process is employed to match the bifurcation and terminal points to detect similar vessel segments. Finally, a modified Hausdorff distance is employed to evaluate the performance of registration. Our experimental results show that the Pearson product–moment correlation coefficient can reach 0.76 and 0.63 in test set of normal image pairs and image pairs with anomalies respectively, which outperforms other methods. An accurate evaluation can not only compare the performance of different registration methods but also can facilitate the clinical diagnosis by screening out the inaccurate registration.

Graphical abstract

.

Keywords

Retinal image Registration evaluation Hungarian matching 

Notes

References

  1. 1.
    Chen J, Jian J, Lee N, Zhang J, Smith RT (2010) A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans Biomed Eng 57(7):1707–1718.  https://doi.org/10.1109/TBME.2010.2042169 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comp Vis 60(2):91–110.  https://doi.org/10.1023/B:VISI.0000029664.99615.94 CrossRefGoogle Scholar
  3. 3.
    Legg PA, Rosin PL, Marshall D, Morgan JE (2015) Feature neighbourhood mutual information for multi-modal image registration: an application to eye fundus imaging. Pattern Recongn 48(6):1937–1946.  https://doi.org/10.1016/j.patcog.2014.12.014 CrossRefGoogle Scholar
  4. 4.
    Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vision Comput 21(11):977–1000.  https://doi.org/10.1016/S0262-8856(03)00137-9 CrossRefGoogle Scholar
  5. 5.
    Gavet Y, Fernandes M, Pinoli JC (2012) Quantitative evaluation of image registration techniques in the case of retinal images. J Electron Imaging 21(2):021118-1–021118-7.  https://doi.org/10.1117/1.JEI.21.2.021118 CrossRefGoogle Scholar
  6. 6.
    Laliberté F, Gagnon L, Sheng Y (2003) Registration and fusion of retinal images-an evaluation study. IEEE Trans Med Imaging 22(5):661–673.  https://doi.org/10.1109/TMI.2003.812263 CrossRefPubMedGoogle Scholar
  7. 7.
    Lee S, Reinhardt JM, Cattin PC, Abramoff MD (2010) Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model. Med Image Anal 14(4):539–549.  https://doi.org/10.1016/j.media.2010.04.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 16(10):1357–1365.  https://doi.org/10.1109/TMI.2007.898551 CrossRefGoogle Scholar
  9. 9.
    Wang Y, Ji G, Lin P (2013) E. Trucco, Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn 46(8):2117–2133.  https://doi.org/10.1016/j.patcog.2012.12.014 CrossRefGoogle Scholar
  10. 10.
    E.P. Ong, J.A. Lee, G. Xu, B.H. Lee, D.W.K. Wong(2016) An automatic quantitative measurement method for performance assessment of retina image registration algorithms. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp16-20.  https://doi.org/10.1109/EMBC.2016.7591422.
  11. 11.
    Y. Shu, J. Kang, H. Li(2017) An improved automatic method for evaluation retinal image registration. In: Proceedings of 2017 IEEE 12th Conference on Industrial Electronics and Applications (ICIEA), pp 75-79.  https://doi.org/10.1109/ICIEA.2017.8282817
  12. 12.
    Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57.  https://doi.org/10.1016/j.media.2014.08.002 CrossRefPubMedGoogle Scholar
  13. 13.
    J. Kang, Z. Ma, H. Li, L. Xu, L. Zhang (2016) Automatic detection of arteriovenous nicking in retinal images. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp 795-800.  https://doi.org/10.1109/ICIEA.2016.7603690.
  14. 14.
    H. Li, C. Opas (2001) Automatic location of optic disk in retinal images, In: 2001 International Conference on Image Processing. pp 837-840.  https://doi.org/10.1109/ICIP.2001.958624.
  15. 15.
    Martinez-Perez ME, Highes AD, Stanton AV, Thorn SA, Chapman N, Bharath AA, Parker KH (2002) Retinal vascular tree morphology: a semi-automatic quantification. IEEE Trans Biomed Eng 49(8):912–917.  https://doi.org/10.1109/TBME.2002.800789 CrossRefPubMedGoogle Scholar
  16. 16.
    Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Log Quart 2(1-2):83–97.  https://doi.org/10.1002/nav.3800020109 CrossRefGoogle Scholar
  17. 17.
    Huttenlocher DP, Gregory GA, William JP (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863.  https://doi.org/10.1109/34.232073 CrossRefGoogle Scholar
  18. 18.
    Staal J, Abramoff MD, Niemeijer M, Viergever MA, Ginneken BV (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509.  https://doi.org/10.1109/TMI.2004.825627 CrossRefPubMedGoogle Scholar
  19. 19.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698.  https://doi.org/10.1109/TPAMI.1986.4767851 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations