Advertisement

Medical & Biological Engineering & Computing

, Volume 57, Issue 12, pp 2717–2729 | Cite as

Combining autocorrelation signals with delay multiply and sum beamforming algorithm for ultrasound imaging

  • Ke SongEmail author
  • Paul Liu
  • Dong C. Liu
Original Article
  • 62 Downloads

Abstract

Beamformer is one of the most important components in ultrasound imaging system. The delay and sum (DAS) beamforming algorithm has been widely used in recent decades due to its simplicity and robustness. However, it has poor impact on resolution and contrast. A new beamformer named filtered delay multiply and sum (F-DMAS) which was an alternative of delay multiply and sum (DMAS) was proposed to overcome these shortcomings of DAS. Although F-DMAS partially enhances the image quality, its performance still has room for improvement. Therefore, a novel beamformer named lag-based delay multiply and sum (L-DMAS) which combines autocorrelation signals with DMAS algorithm is proposed by us to improve its efficiency. Field II was employed to synthesize a point target phantom and a cyst phantom to compare the performance between DAS, F-DMAS, double stage delay multiply and sum (DS-DMAS), and L-DMAS. We also estimate the performance of four algorithms on experimental data and in vivo data. These results show that both DS-DMAS and L-DMAS are better than DAS and F-DMAS in each case. In some cases, DS-DMAS and L-DMAS have little difference in performance, but in other cases, L-DMAS outperforms DS-DMAS.

Graphical Abstract

Keywords

Ultrasound imaging Beamforming Autocorrelation Lag Delay multiply and sum 

Notes

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and suggestions. We also thank Saset Healthcare (Chengdu) Inc., for providing the ultrasound device.

Funding information

This work is partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No KJQN201801606), in part by Chongqing Electronics Engineering Technology Research Center for Interactive Learning, and in part by Chongqing Big Data Engineering Laboratory for Children.

References

  1. 1.
    Van Veen BD, Buckley KM (1988) Beamforming: A versatile Approach to Spatial Filtering. IEEE ASSP Mag 5(2):4–24.  https://doi.org/10.1109/53.665 CrossRefGoogle Scholar
  2. 2.
    Thomenius KE (1996) Evolution of ultrasound beamformers. Proc IEEE Int Ultrason Symp 1996:1615–1622.  https://doi.org/10.1109/ULTSYM.1996.584398 CrossRefGoogle Scholar
  3. 3.
    Su T, Li D, Zhang S (2018) An efficient subarray average delay multiply and sum beamformer algorithm in ultrasound imaging. Ultrasonics 84:411–420.  https://doi.org/10.1016/j.ultras.2017.12.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Vignon F, Burcher MR (2008) Capon Beamforming in Medical Ultrasound Imaging with Focused Beams. IEEE Trans Ultrason Ferroelectr Freq Control 55(3):619–628.  https://doi.org/10.1109/TUFFC.2008.686 CrossRefPubMedGoogle Scholar
  5. 5.
    Capon J (1969) High-resolution frequency-wave number spectrum analysis. Proc IEEE 57(8):1408–1418.  https://doi.org/10.1109/PROC.1969.7278 CrossRefGoogle Scholar
  6. 6.
    Mann JA, Walker WF (2002) A constrained adaptive beamformer for medical ultrasound: Initial results. Proc IEEE Int Ultrason Symp 2002:1807–1810.  https://doi.org/10.1109/ULTSYM.2002.1192650 CrossRefGoogle Scholar
  7. 7.
    Synnevag J-F, Austeng A, Holm S (2011) A low-complexity data dependent beamformer. IEEE Trans Ultrason Ferroelectr Freq Control 58(2):281–289.  https://doi.org/10.1109/TUFFC.2011.1805 CrossRefPubMedGoogle Scholar
  8. 8.
    Mallart R, Fink M (1991) The van Cittert–Zernike theorem in pulse echo measurements. J Acoust Soc Am 90(5):2718–2727.  https://doi.org/10.1121/1.401867 CrossRefGoogle Scholar
  9. 9.
    Liu D-L, Waag RC (1995) About the application of the van Cittert-Zernike theorem in ultrasonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 42(4):590–601.  https://doi.org/10.1109/58.393102 CrossRefGoogle Scholar
  10. 10.
    Lediju MA, Trahey GE, Byram BC, Dahl JJ (2011) Short-lag spatial coherence of backscattered echoes: Imaging characteristics. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1377–1388.  https://doi.org/10.1109/TUFFC.2011.1957 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nair AA, Tran TD, Lediju Bell MA (2018) Robust Short-Lag Spatial Coherence Imaging. IEEE Trans Ultrason Ferroelectr Freq Control 65(3):366–377.  https://doi.org/10.1109/TUFFC.2017.2780084 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dahl JJ, Hyun D, Lediju M, Trahey GE (2011) Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging. Ultrason Imaging 33(2):119–133.  https://doi.org/10.1177/016173461103300203 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Long W, Hyun D, Choudhury KR, Bradway D, McNally P, Boyd B, Ellestad S, Trahey GE (2018) Clinical Utility of Fetal Short-Lag Spatial Coherence Imaging. Ultrasound Med Biol 44(4):794–806.  https://doi.org/10.1016/j.ultrasmedbio.2017.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kakkad V, Dahl J, Ellestad S, Trahey G (2015) In Vivo Application of Short-Lag Spatial Coherence and Harmonic Spatial Coherence Imaging in Fetal Ultrasound. Ultrason Imaging 37(2):101–116.  https://doi.org/10.1177/0161734614547281 CrossRefPubMedGoogle Scholar
  15. 15.
    Wiacek A, Rindal OMH, Falomo E, Myers K, Fabrega-Foster K, Harvey S, Lediju Bell MA (2019) Robust Short-Lag Spatial Coherence Imaging of Breast Ultrasound Data: Initial Clinical Results. IEEE Trans Ultrason Ferroelectr Freq Control 66(3):527–540.  https://doi.org/10.1109/TUFFC.2018.2883427 CrossRefPubMedGoogle Scholar
  16. 16.
    Bell MAL, Kuo N, Song DY, Boctor EM (2013) Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds. Biomed Opt Expr 4(10):1964–1977.  https://doi.org/10.1364/BOE.4.001964 CrossRefGoogle Scholar
  17. 17.
    Matrone G, Savoia AS, Caliano G, Magenes G (2015) The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans Med Imag 34(4):940–949.  https://doi.org/10.1109/TMI.2014.2371235 CrossRefGoogle Scholar
  18. 18.
    Lim HB, Nhung NT, Li EP, Thang ND (2008) Confocal microwave imaging for breast cancer detection: Delay-multiply-and-Sum image reconstruction algorithm. IEEE Trans Biomed Eng 55(6):1697–1704.  https://doi.org/10.1109/TBME.2008.919716 CrossRefPubMedGoogle Scholar
  19. 19.
    Park J, Jeon S, Meng J, Song L, Lee JS, Kim C (2016) Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy. J Biomed Opt 21(3):036 010.  https://doi.org/10.1117/1.JBO.21.3.036010 CrossRefGoogle Scholar
  20. 20.
    Matrone G, Ramalli A, Savoia AS, Tortoli P, Magenes G (2017) High Frame-Rate, High Resolution Ultrasound Imaging With Multi-Line Transmission and Filtered-Delay Multiply And Sum Beamforming. IEEE Trans Med Imag 36(2):478–486.  https://doi.org/10.1109/TMI.2016.2615069 CrossRefGoogle Scholar
  21. 21.
    Mozaffarzadeha M, Mahloojifara A, Oroojia M (2017) Medical Photoacoustic Beamforming Using Minimum Variance-Based Delay Multiply and Sum. Proc SPIE 10335:1033522–1033522.  https://doi.org/10.1117/12.2269608 CrossRefGoogle Scholar
  22. 22.
    Mozaffarzadeha M, Mahloojifar A, Orooji M, Kratkiewicz K, Adabi S, Nasiriavanaki M (2018) Linear-Array Photoacoustic Imaging Using Minimum Variance-Based Delay Multiply and Sum Adaptive Beamforming Algorithm. J Biomed Opt 23(2):026002–026002.  https://doi.org/10.1117/1.JBO.23.2.026002 CrossRefGoogle Scholar
  23. 23.
    Mozaffarzadeha M, Mahloojifar A, Orooji M, Adabi S, Nasiriavanaki M (2018) Double-Stage Delay Multiply and Sum Beamforming Algorithm: Application to Linear-Array Photoacoustic Imaging. IEEE Trans Biomed Eng 65(1):31–42.  https://doi.org/10.1109/TBME.2017.2690959 CrossRefGoogle Scholar
  24. 24.
    Matrone G (2018) Ramalli A (2018) Spatial Coherence of Backscattered Signals in Multi-Line Transmit Ultrasound Imaging and Its Effect on Short-Lag Filtered-Delay Multiply and Sum Beamforming. Appl Sci 8(4):486.  https://doi.org/10.3390/app8040486 CrossRefGoogle Scholar
  25. 25.
    Prieur F, Rindal OMH, Holm S, Austeng A (2017) Influence of the Delay-Multiply-And-Sum beamformer on the ultrasound image amplitude. Proc IEEE Int Ultrason Symp 2017:1–4.  https://doi.org/10.1109/ULTSYM.2017.8092637 CrossRefGoogle Scholar
  26. 26.
    Prieur F, Rindal OMH, Austeng A (2018) Signal Coherence and Image Amplitude With the Filtered Delay Multiply and Sum Beamformer. IEEE Trans Ultrason Ferroelectr Freq Control 65(7):1133–1140.  https://doi.org/10.1109/TUFFC.2018.2831789 CrossRefPubMedGoogle Scholar
  27. 27.
    Kirkhorn J (1999) Introduction to IQ-demodulation of RF-data. http://folk.ntnu.no/htorp/Undervisning/TTK10/IQdemodulation.pdf. Accessed 10 May 2018
  28. 28.
    Lyons R (2008) Quadrature Signals: Complex, But Not Complicated. http://dspguru.com/files/QuadSignals.pdf (access date: 2018-7-5). Accessed 5 Jul 2018
  29. 29.
    Jensen JA, Svendsen NB (1992) Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelec Freq Contr 39:262–267.  https://doi.org/10.1109/58.139123 CrossRefGoogle Scholar
  30. 30.
    Jensen JA (1996) Field: A program for simulating ultrasound systems. Med Biol Eng Comput 34(Sup.1):351–353Google Scholar
  31. 31.
    Hyun D, Brickson LL, Looby KT, Dahl JJ (2019) Beamforming and Speckle Reduction Using Neural Networks. IEEE Trans Ultrason Ferroelectr Freq Control 66(5):898–910.  https://doi.org/10.1109/TUFFC.2019.2903795 CrossRefPubMedGoogle Scholar
  32. 32.
    Smith SW (1999) The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd edn. California Technical Publishing, CaliforniaGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.College of Computer ScienceSichuan UniversityChengduChina
  2. 2.School of Mathematics and Information EngineeringChongqing University of EducationChongqingChina
  3. 3.Stork Healthcare Ltd.ChengduChina

Personalised recommendations