Advertisement

Leveraging network analysis to support experts in their analyses of subjects with MCI and AD

  • Paolo Lo Giudice
  • Nadia Mammone
  • Francesco Carlo Morabito
  • Rocco Giuseppe Pizzimenti
  • Domenico UrsinoEmail author
  • Luca Virgili
Original Article

Abstract

In this paper, we propose a network analysis–based approach to help experts in their analyses of subjects with mild cognitive impairment (hereafter, MCI) and Alzheimer’s disease (hereafter, AD) and to investigate the evolution of these subjects over time. The inputs of our approach are the electroencephalograms (hereafter, EEGs) of the patients to analyze, performed at a certain time and, again, 3 months later. Given an EEG of a subject, our approach constructs a network with nodes that represent the electrodes and edges that denote connections between electrodes. Then, it applies several network-based techniques allowing the investigation of subjects with MCI and AD and the analysis of their evolution over time. (i) A connection coefficient, supporting experts to distinguish patients with MCI from patients with AD; (ii) A conversion coefficient, supporting experts to verify if a subject with MCI is converting to AD; (iii) Some network motifs, i.e., network patterns very frequent in one kind of patient and absent, or very rare, in the other. Patients with AD, just by the very nature of their condition, cannot be forced to stay motionless while undergoing examinations for a long time. EEG is a non-invasive examination that can be easily done on them. Since AD and MCI, if prodromal to AD, are associated with a loss of cortical connections, the adoption of network analysis appears suitable to investigate the effects of the progression of the disease on EEG. This paper confirms the suitability of this idea

Graphical Abstract

Ability of our proposed model to distinguish a control subject from a patient with MCI and a patient with AD. Blue edges represent strong connections among the corresponding brain areas; red edges denote middle connections, whereas green edges indicate weak connections. In the control subject (at the top), most connections are blue. In the patient with MCI (at the middle), most connections are red and green. In the patient with AD (at the bottom), most connections are either absent or green.

.

Keywords

Mild cognitive impairment Alzheimer’s disease Network analysis Connection coefficient Conversion coefficient Network motifs Cliques Electroencephalograms Colored networks Clique networks 

Notes

Funding information

This work was partially funded by the Italian Ministry of Health, Project Code GR-2011-02351397, and by the Department of Information Engineering at the Polytechnic University of Marche under the project “A network-based approach to uniformly extract knowledge and support decision making in heterogeneous application contexts” (RSAB 2018).

References

  1. 1.
    Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17. Public Library of ScienceGoogle Scholar
  2. 2.
    Ahmadlou M, Adeli A, Bajo R, Adeli H (2014) Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task. Clin Neurophysiol 125(4):694–702. ElsevierGoogle Scholar
  3. 3.
    Ahmadlou M, Adeli H (2010) Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci 41(1):1–10. SAGE PublicationsGoogle Scholar
  4. 4.
    Ahmadlou M, Adeli H, Adeli A (2012) Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder. Physica A: Stat Mech Appl 391(20):4720–4726. ElsevierGoogle Scholar
  5. 5.
    Ahuja RK (2017) Network flows: theory, algorithms, and applications. Pearson Education, BostonGoogle Scholar
  6. 6.
    Akar SA, Kara S, Latifoğlu F, Bilgiç V (2016) Analysis of the complexity measures in the EEG of schizophrenia patients. Int J Neural Syst 26(02):1650008. World ScientificGoogle Scholar
  7. 7.
    Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O (2009) Modeling the impact of lesions in the human brain. PLoS Comput Biol 5(6):e1000408. Public Library of ScienceGoogle Scholar
  8. 8.
    Amezquita-Sanchez J, Adeli A, Adeli H (2016) A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG). Behav Brain Res 305:174–180. ElsevierGoogle Scholar
  9. 9.
    American Psychiatric Association (ed.) (2013) Diagnostic and statistical manual of mental disorders. 5th edGoogle Scholar
  10. 10.
    Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Physical Rev Lett 88(17):174102Google Scholar
  11. 11.
    Besthorn C, Sattel H, Geiger-Kabisch C, Zerfass R, Forstl H (1995) Parameters of EEG dimensional complexity in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 95(2):84–89. ElsevierGoogle Scholar
  12. 12.
    Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S, Schreiter-Gasser U, Forstl H (1997) Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr Clin Neurophysiol 103 (2):241–248. ElsevierGoogle Scholar
  13. 13.
    Bollobas B (2013) Modern graph theory (graduate texts in mathematics). Salmon Tower Building. Springer, New YorkGoogle Scholar
  14. 14.
    Buscema M, Grossi E, Capriotti M, Babiloni C, Rossini P (2010) The IFAST model allows the prediction of conversion to Alzheimer disease in patients with mild cognitive impairment with high degree of accuracy. Curr Alzheimer Res 7(2):173–187. Bentham Science PublishersGoogle Scholar
  15. 15.
    Chyzhyk D, Graña M, Öngür D, Shinn AK (2015) Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI. Int J Neural Syst 25(03):1550007. World ScientificGoogle Scholar
  16. 16.
    Czigler B, Csikós D, Hidasi Z, Gaál Z, Csibri E, Kiss E, Salacz P, Molnár M (2008) Quantitative EEG in early Alzheimer’s disease patients’ power spectrum and complexity features. Int J Psychophysiol 68(1):75–80. ElsevierGoogle Scholar
  17. 17.
    Dauwels J, Vialatte F, Cichocki A (2010) Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr Alzheimer Res 7(6):487–505. Bentham Science PublishersGoogle Scholar
  18. 18.
    Dauwels J, Vialatte F, Cichocki A (2011) On the early diagnosis of Alzheimer’s disease from EEG signals: a mini-review. In: Advances in cognitive neurodynamics (II). Springer, pp 709–716Google Scholar
  19. 19.
    Dauwels J, Vialatte F, Musha T, Cichocki A (2010) A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage 49(1):668–693Google Scholar
  20. 20.
    Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32(12):2322–e19. ElsevierGoogle Scholar
  21. 21.
    de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier W, Scheltens P, Stam CJ (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neuroscience 10(1):1. BioMed CentralGoogle Scholar
  22. 22.
    Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21Google Scholar
  23. 23.
    Deo N (2016) Graph theory with applications to engineering and computer science. Mineola. Dover Publications, New YorkGoogle Scholar
  24. 24.
    Fraga FJ, Falk TH, Kanda PA, Anghinah R (2013) Characterizing Alzheimer’s disease severity via resting-awake EEG amplitude modulation analysis. PloS one 8(8):e72240. Public Library of ScienceGoogle Scholar
  25. 25.
    Lo Giudice P, Ursino D, Mammone N, Morabito FC, Aguglia U, Cianci V, Ferlazzo E, Gasparini S (2019) A network analysis based approach to characterizing periodic sharp wave complexes in electroencephalograms of patients with sporadic CJD. Int J Med Inform 121:19–29. ElsevierGoogle Scholar
  26. 26.
    Gouw AA, Alsema AM, Tijms BM, Borta A, Scheltens P, Stam CJ, van der Flier WM (2017) EEG spectral analysis as a putative early prognostic biomarker in nondemented, amyloid positive subjects. Neurobiol Aging 57:133–142. ElsevierGoogle Scholar
  27. 27.
    Gross JL, Yellen J (2005) Graph theory and its applications. Chapman and Hall/CRC, New YorkGoogle Scholar
  28. 28.
    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen JV, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Comput Biol 6(7):e159. Public Library of ScienceGoogle Scholar
  29. 29.
    Han J, Kamber M (2006) Data Mining: concepts and techniques - second edition. Morgan Kaufmann NotesGoogle Scholar
  30. 30.
    Hatz F, Hardmeier M, Benz N, Ehrensperger M, Gschwandtner U, Rüegg S, Schindler C, Monsch AU, Fuhr P (2015) Microstate connectivity alterations in patients with early Alzheimer’s disease. Alzheimers Res Ther 7(1):78. BioMed CentralGoogle Scholar
  31. 31.
    He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex 17(10):2407–2419Google Scholar
  32. 32.
    Hebert L, Weuve J, Scherr P, Evans D (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. AAN EnterprisesGoogle Scholar
  33. 33.
    Hirschauer TJ, Adeli H, Buford JA (2015) Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J Med Syst 39(11):179. SpringerGoogle Scholar
  34. 34.
    Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci 106(6):2035–2040. National Academy of SciencesGoogle Scholar
  35. 35.
    Hornero R, Abásolo D, Escudero J, Gómez C (2009) Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367(1887):317–336. The Royal SocietyGoogle Scholar
  36. 36.
    Jalili M (2017) Graph theoretical analysis of Alzheimer’s disease: discrimination of AD patients from healthy subjects. Inform Sci 384:145–156. ElsevierGoogle Scholar
  37. 37.
    Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115(7):1490–1505. ElsevierGoogle Scholar
  38. 38.
    Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inform Sci 294:565–575. ElsevierGoogle Scholar
  39. 39.
    Knyazeva M, Jalili M, Brioschi A, Bourquin I, Fornari E, Hasler M, Meuli R, Maeder P, Ghika J (2010) Topography of EEG multivariate phase synchronization in early Alzheimer’s disease. Neurobiol Aging 31(7):1132–1144. ElsevierGoogle Scholar
  40. 40.
    Koppert M, Kalitzin S, Velis D, Lopes Da Silva F, Viergever MA (2016) Preventive and abortive strategies for stimulation based control of epilepsy: a computational model study. Int J Neural Syst 26(08):1650028. World ScientificGoogle Scholar
  41. 41.
    Labate D, La Foresta F, Morabito G, Palamara I, Morabito FC (2013) Entropic measures of EEG complexity in Alzheimer’s disease through a multivariate multiscale approach. IEEE Sensors J 13(9):3284–3292Google Scholar
  42. 42.
    Mammone N, Bonanno L, De Salvo S, Marino S, Bramanti P, Bramanti A, Morabito FC (2017) Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients. Int J Neural Syst 27(05):1750020. World ScientificGoogle Scholar
  43. 43.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827. American Association for the Advancement of ScienceGoogle Scholar
  44. 44.
    Miraglia F, Vecchio F, Rossini P (2017) Searching for signs of aging and dementia in EEG through network analysis. Behav Brain Res 317:292–300. ElsevierGoogle Scholar
  45. 45.
    Morabito FC, Campolo M, Labate D, Morabito G, Bonanno L, Bramanti A, De Salvo S, Marra A, Bramanti P (2015) A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach. Int J Neural Syst 25(02):1550005. World ScientificGoogle Scholar
  46. 46.
    Morabito FC, Labate D, Bramanti A, La Foresta F, Morabito G, Palamara I, Szu H (2013) Enhanced compressibility of EEG signal in Alzheimer’s disease patients. IEEE Sensors J 13(9):3255–3262. IEEEGoogle Scholar
  47. 47.
    Morabito FC, Labate D, Morabito G, Palamara I, Szu H (2013) Monitoring and diagnosis of Alzheimer’s disease using noninvasive compressive sensing EEG. In: SPIE defense, security, and sensing. International Society for Optics and Photonics, pp 87500Y–87500YGoogle Scholar
  48. 48.
    Moretti DV (2015) Association of EEG, MRI, and regional blood flow biomarkers is predictive of prodromal Alzheimer’s disease. Neuropsychiatr Dis Treat 11:2779. Dove PressGoogle Scholar
  49. 49.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45.2:167–256Google Scholar
  50. 50.
    Onnela JP, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E 71(6):065103. APSGoogle Scholar
  51. 51.
    Parvinnia E, Sabeti M, Jahromi M, Boostani R (2014) Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm. Journal of King Saud University-Computer and Information Sciences 26(1):1–6. ElsevierGoogle Scholar
  52. 52.
    Petersen R (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3):183–194. Wiley Online LibraryGoogle Scholar
  53. 53.
    Poil SS, De Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K (2013) Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front Aging Neurosci 5:58. FrontiersGoogle Scholar
  54. 54.
    Ponten SC, Douw L, Bartolomei F, Reijneveld JC, Stam CJ (2009) Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses. Exp Neurol 217(1):197–204. ElsevierGoogle Scholar
  55. 55.
    Ramirez J, Gorriz J, Salas-Gonzalez D, Romero A, Lopez M, Alvarez I, Gomez-Rio M (2013) Computer-aided diagnosis of Alzheimer’s type dementia combining support vector machines and discriminant set of features. Inform Sci 237:59–72. ElsevierGoogle Scholar
  56. 56.
    Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. ElsevierGoogle Scholar
  57. 57.
    Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117. ElsevierGoogle Scholar
  58. 58.
    Sankari Z, Adeli H, Adeli A (2011) Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease. Clin Neurophysiol 122(5):897–906. ElsevierGoogle Scholar
  59. 59.
    Sporns O, Kötter RR (2004) Motifs in brain networks. PLoS Comput Biol 2(11):e369. Public Library of ScienceGoogle Scholar
  60. 60.
    Stam CJ, Jones B, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17(1):92–99. Oxford Univ PressGoogle Scholar
  61. 61.
    Su F, Wang J, Deng B, Wei XL, Chen YY, Liu C, Li HY (2015) Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int J Neural Syst 25(01):1450030. World ScientificGoogle Scholar
  62. 62.
    Vecchio F, Miraglia F, Marra C, Quaranta D, Vita M, Bramanti P, Rossini P (2014) Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis 41(1):113–127. IOS PressGoogle Scholar
  63. 63.
    Vialatte F, Cichocki A, Dreyfus G, Musha T, Shishkin SL, Gervais R (2005) Early detection of Alzheimer’s disease by blind source separation, time frequency representation, and bump modeling of EEG signals. In: Proc. of the international conference on artificial neural networks (ICANN’05). Lecture Notes in Computer Science, Springer, Warsaw, pp 683–692Google Scholar
  64. 64.
    Villar JR, Vergara P, Menéndez M, de la Cal E, González VM, Sedano J (2016) Generalized Models for the classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition . Int J Neural Syst 26(06):1650037. World ScientificGoogle Scholar
  65. 65.
    Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30 (2):638–649. Wiley Online LibraryGoogle Scholar
  66. 66.
    Wang R, Wang J, Yu H, Wei X, Yang C, Deng B (2015) Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn Neurodyn 9(3):291–304. SpringerGoogle Scholar
  67. 67.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. Nature Publishing GroupGoogle Scholar
  68. 68.
    Yan JZ (2005) Abnormal cortical functional connections in Alzheimer’s disease: analysis of inter-and intra-hemispheric EEG coherence. J Zhejiang Univ Sci B 6(4):259–264. SpringerGoogle Scholar
  69. 69.
    Yu M, Gouw A, Hillebrand A, Tijms B, Stam C, van Straaten E, Pijnenburg Y (2016) Different functional connectivity and network topology in behavioral variant of frontotemporal dementia and Alzheimer’s disease: an EEG study. Neurobiol Aging 42:150–162. ElsevierGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.DIIESUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly
  2. 2.IRCCS Centro Neurolesi Bonino PulejoMessinaItaly
  3. 3.DICEAMUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly
  4. 4.Deloitte TTLLondonUK
  5. 5.DIIPolytechnic University of MarcheAnconaItaly

Personalised recommendations