Repolarization variability independent of heart rate during sympathetic activation elicited by head-up tilt

  • Fatima El-Hamad
  • Michal Javorka
  • Barbora Czippelova
  • Jana Krohova
  • Zuzana Turianikova
  • Alberto Porta
  • Mathias BaumertEmail author
Original Article


The fraction of repolarization variability independent of RR interval variability is of clinical interest. It has been linked to direct autonomic nervous system (ANS) regulation of the ventricles in healthy subjects and seems to reflect the instability of the ventricular repolarization process in heart disease. In this study, we sought to identify repolarization measures that best reflect the sympathetic influences on the ventricles independent of the RR interval. ECG was recorded in 46 young subjects during supine and then following 45 degrees head-up tilt. RR intervals and five repolarization features (QTend, QTpeak, RTend, RTpeak, and TpTe) were extracted from the ECG recordings. Repolarization variability was separated into RR-dependent and RR-independent variability using parametric spectral analysis. Results show that LF power of TpTe is independent of RR in both supine and tilt, while the LF power of QTend and RTend independent of RR and respiration increases following tilt. We conclude that TpTe is independent of RR and is highly affected by respiration. QTend and RTend LF power might reflect the sympathetic influences on the ventricles elicited by tilt.

Graphical abstract


Repolarization Heart rate variability QT interval Tpeak-Tend Sympathetic activation Head-up tilt Autonomic nervous system 



MJ was supported by grants APVV-0235-12, VEGA 1/0117/17, and project “Biomedical Center Martin,” ITMS code: 26220220187, the project co-financed from EU sources.

Compliance with ethical standards

In compliance with Declaration of Helsinki for studies involving human subjects, all procedures were approved by Ethical Committee of the Jessenius Faculty of Medicine, Comenius University and all participants or their legal guardian (if the subject was aged below 18 years) signed written informed consent.


  1. 1.
    Pueyo E, Martínez JP, Laguna P (2009) Cardiac repolarization analysis using the surface electrocardiogram. Philos Trans A Math Phys Eng Sci 367:213–233CrossRefGoogle Scholar
  2. 2.
    Atiga WL, Calkins H, Lawrence JH, Tomaselli GF, Smith JM, Berger RD (1998) Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol 9:899–908CrossRefGoogle Scholar
  3. 3.
    Tomaselli GF, Beuckelmann DJ, Calkins HG, Berger RD, Kessler PD, Lawrence JH, Kass D, Feldman AM, Marban E (1994) Sudden cardiac death in heart failure: the role of abnormal repolarization. Circulation 90:2534–2539CrossRefGoogle Scholar
  4. 4.
    Rizas KD, McNitt S, Hamm W, Massberg S, Kääb S, Zareba W, Couderc JP, Bauer A (2017) Prediction of sudden and non-sudden cardiac death in post-infarction patients with reduced left ventricular ejection fraction by periodic repolarization dynamics: MADIT-II substudy. Eur Heart J 38:2110–2118CrossRefGoogle Scholar
  5. 5.
    Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF (1997) Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96:1557–1565CrossRefGoogle Scholar
  6. 6.
    Chen X, Hu Y, Fetics BJ, Berger RD, Trayanova NA (2011) Unstable QT interval dynamics precedes ventricular tachycardia onset in patients with acute myocardial infarction. Circ Arrhythm Electrophysiol 4:858CrossRefGoogle Scholar
  7. 7.
    Murabayashi T, Fetics B, Kass D, Nevo E, Gramatikov B, Berger RD (2002) Beat-to-beat QT interval variability associated with acute myocardial ischemia. J Electrocardiol 35:19–25CrossRefGoogle Scholar
  8. 8.
    Yeragani VK, Berger R, Desai N, Bar KJ, Chokka P, Tancer M (2007) Relationship between beat-to-beat variability of RT-peak and RT-end intervals in normal controls, patients with anxiety, and patients with cardiovascular disease. Ann Noninvasive Electrocardiol 12:203–209CrossRefGoogle Scholar
  9. 9.
    Baumert M, Porta A, Vos MA, Malik M, Couderc J-P, Laguna P, Piccirillo G, Smith GL, Tereshchenko LG, Volders PG (2016) QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace 18:925–944CrossRefGoogle Scholar
  10. 10.
    Porta A, Tobaldini E, Gnecchi-Ruscone T, Montano N (2010) RT variability unrelated to heart period and respiration progressively increases during graded head-up tilt. Am J Physiol Heart Circ Physiol 298:1406–1414CrossRefGoogle Scholar
  11. 11.
    El-Hamad F, Lambert E, Abbott D, Baumert M (2015) Relation between QT interval variability and muscle sympathetic nerve activity in normal subjects. Am J Physiol Heart Circ Physiol 309:H1218–H1224CrossRefGoogle Scholar
  12. 12.
    Baumert M, Czippelova B, Porta A, Javorka M (2013) Decoupling of QT interval variability from heart rate variability with ageing. Physiol Meas 34:1435–1448CrossRefGoogle Scholar
  13. 13.
    Hintze U, Vach W, Burchardt H, Videbæk J, Møller M (2002) QT interval dynamics predict mortality in high-risk patients after myocardial infarction. Scand Cardiovasc J 36:276–281CrossRefGoogle Scholar
  14. 14.
    Hasan MA, Abbott D, Baumert M (2013) Beat-to-beat QT interval variability and T-wave amplitude in patients with myocardial infarction. Physiol Meas 34:1075–1083CrossRefGoogle Scholar
  15. 15.
    Couderc J-P (2009) Measurement and regulation of cardiac ventricular repolarization: from the QT interval to repolarization morphology. Philos Trans A Math Phys Eng Sci 367:1283–1299CrossRefGoogle Scholar
  16. 16.
    Merri M, Alberti M, Moss AJ (1993) Dynamic analysis of ventricular repolarization duration from 24-hour Holter recordings. IEEE Trans Biomed Eng 40:1219–1225CrossRefGoogle Scholar
  17. 17.
    Piccirillo G, Magrì D, Ogawa M, Song J, Chong VJ, Han S, Joung B, Choi EK, Hwang S, Chen LS, Lin SF, Chen PS (2009) Autonomic nervous system activity measured directly and QT interval variability in normal and pacing-induced tachycardia heart failure dogs. J Am Coll Cardiol 54:840–850CrossRefGoogle Scholar
  18. 18.
    Baumert M, Schlaich MP, Nalivaiko E, Lambert E, Sari CI, Kaye DM et al (2011) Relation between QT interval variability and cardiac sympathetic activity in hypertension. Am J Physiol Heart Circ Physiol 300:1412–1417CrossRefGoogle Scholar
  19. 19.
    Baumert M, Lambert GW, Dawood T, Lambert EA, Esler MD, McGrane M et al (2008) QT interval variability and cardiac norepinephrine spillover in patients with depression and panic disorder. Am J Physiol Heart Circ Physiol 295:962–968CrossRefGoogle Scholar
  20. 20.
    Hasan MA, Abbott D, Baumert M (2012) Relation between beat-to-beat QT interval variability and T-wave amplitude in healthy subjects. Ann Noninvasive Electrocardiol 17:195–203CrossRefGoogle Scholar
  21. 21.
    Hasan MA, Abbott D, Baumert M (2012) Beat-to-beat vectorcardiographic analysis of ventricular depolarization and repolarization in myocardial infarction. PLoS One 7:e49489CrossRefGoogle Scholar
  22. 22.
    Sacre JW, Franjic B, Coombes JS, Marwick TH, Baumert M (2013) QT interval variability in type 2 diabetic patients with cardiac sympathetic dysinnervation assessed by 123I-metaiodobenzylguanidine scintigraphy. J Cardiovasc Electrophysiol 24:305–313CrossRefGoogle Scholar
  23. 23.
    Fischer C, Seeck A, Schroeder R, Goernig M, Schirdewan A, Figulla HR, Baumert M, Voss A (2015) QT variability improves risk stratification in patients with dilated cardiomyopathy. Physiol Meas 36:699–713CrossRefGoogle Scholar
  24. 24.
    Porta A, Baselli G, Lombardi F, Cerutti S, Antolini R, Del Greco M et al (1998) Performance assessment of standard algorithms for dynamic R-T interval measurement: comparison between R-Tapex and R-Tend approach. Med Biol Eng Comput 36:35–42CrossRefGoogle Scholar
  25. 25.
    Davey PP (1999) QT interval measurement: Q to TApex or Q to TEnd? Ann Intern Med 246:145–149Google Scholar
  26. 26.
    Hevia JC, Antzelevitch C, Bárzaga FT, Sánchez MD, Balea FD, Molina RZ et al (2006) Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol 47:1828–1834CrossRefGoogle Scholar
  27. 27.
    Merri M, Benhorin J, Alberti M, Locati E, Moss AJ (1989) Electrocardiographic quantitation of ventricular repolarization. Circulation 80:1301–1308CrossRefGoogle Scholar
  28. 28.
    Piccirillo G, Magrì D, Pappadà MA, Maruotti A, Ogawa M, Han S, Joung B, Rossi P, Nguyen BL, Lin SF, Chen PS (2012) Autonomic nerve activity and the short-term variability of the Tpeak-Tend interval in dogs with pacing-induced heart failure. Heart Rhythm 9:2044–2050CrossRefGoogle Scholar
  29. 29.
    Yan G-X, Antzelevitch C (1998) Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation 98:1928–1936CrossRefGoogle Scholar
  30. 30.
    Arini PD, Bertrán GC, Valverde ER, Laguna P (2008) T-wave width as an index for quantification of ventricular repolarization dispersion: evaluation in an isolated rabbit heart model. Biomed Signal Process Control 3:67–77CrossRefGoogle Scholar
  31. 31.
    Lubinski A, Kornacewicz-Jach Z, Wnuk-Wojnar AM, Adamus J, Kempa M, Krolak T et al (2000) The terminal portion of the T wave: a new electrocardiographic marker of risk of ventricular arrhythmias. Pacing Clin Electrophysiol: PACE 23:1957–1959CrossRefGoogle Scholar
  32. 32.
    Javorka M, El-Hamad F, Czippelova B, Turianikova Z, Krohova J, Lazarova Z et al (2018) Role of respiration in the cardiovascular response to orthostatic and mental stress. Am J Physiol Regul Integr Comp Physiol 314:R761–R7R9Google Scholar
  33. 33.
    Baumert M, Schmidt M, Zaunseder S, Porta A (2016) Effects of ECG sampling rate on QT interval variability measurement. Biomed Signal Process Control 25:159–164CrossRefGoogle Scholar
  34. 34.
    Schmidt M, Baumert M, Porta A, Malberg H, Zaunseder S (2014) Two-dimensional warping for one-dimensional signals: conceptual framework and application to ECG processing. IEEE Trans Sign Process 62:5577–5588CrossRefGoogle Scholar
  35. 35.
    Zaunseder S, Schmidt M, Malberg H, Baumert M, 2014. Measurement of QT variability by two-dimensional warping. In: Annual Conference of the European Study Group on Cardiovascular Oscillations, Trento, Italy, 25-28 May 2014. IEEE, pp 163-4.Google Scholar
  36. 36.
    Tarvainen MP, Ranta-aho PO, Karjalainen PA (2002) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49:172–175CrossRefGoogle Scholar
  37. 37.
    Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S (1997) Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans on Biomed Eng 44:1092–1101CrossRefGoogle Scholar
  38. 38.
    Porta A, Bari V, Maria BD, Baumert M (2017) A network physiology approach to the assessment of the link between sinoatrial and ventricular cardiac controls. Physiol Meas 38:1472–1489CrossRefGoogle Scholar
  39. 39.
    Faes L, Nollo G, Porta A (2012) Non-uniform multivariate embedding to assess the information transfer in cardiovascular and cardiorespiratory variability series. Comput Biol Med 42:290–297CrossRefGoogle Scholar
  40. 40.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723Google Scholar
  41. 41.
    Yeragani VK, Pohl R, Jampala V, Balon R, Kay J, Igel G (2000) Effect of posture and isoproterenol on beat-to-beat heart rate and QT variability. Neuropsychobiology 41:113–123CrossRefGoogle Scholar
  42. 42.
    Magnano AR, Holleran S, Ramakrishnan R, Reiffel JA, Bloomfield DM (2002) Autonomic nervous system influences on qt interval in normal subjects. J Am Coll Cardiol 39:1820–1826CrossRefGoogle Scholar
  43. 43.
    Cardiology TFotESo (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065CrossRefGoogle Scholar
  44. 44.
    Conrath CE, Opthof T (2006) Ventricular repolarization: an overview of (patho)physiology, sympathetic effects and genetic aspects. Prog Biophys Mol Biol 92:269–307CrossRefGoogle Scholar
  45. 45.
    Vybiral T, Bryg RJ, Maddens ME, Boden WE (1989) Effect of passive tilt on sympathetic and parasympathetic components of heart rate variability in normal subjects. Am J Cardiol 63:1117–1120Google Scholar
  46. 46.
    Almeida R, Gouveia S, Rocha AP, Pueyo E, Martinez JP, Laguna P (2006) QT variability and HRV interactions in ECG: quantification and reliability. IEEE Trans Biomed Eng 53:1317–1329CrossRefGoogle Scholar
  47. 47.
    Zhu Y, Lee PJ, Pan J, Lardin HA (2008) The relationship between ventricular repolarization duration and RR interval in normal subjects and patients with myocardial infarction. Cardiology 111:209–218CrossRefGoogle Scholar
  48. 48.
    Porta A, Tobaldini E, Montano N, Gnecchi-Ruscone T, (2007). The strength of QT-RR coupling decreases during graded head-up tilt.In: Ann Intern Conf IEEE EMBS, Lyon, France, 22-26 Aug 2007Google Scholar
  49. 49.
    Porta A, Tobaldini E, Magagnin V, Bassani T, Gnecchi-Ruscone T, Montano N, (2009). Open loop linear parametric modeling of the QT variability. In: Ann Intern Conf IEEE EMBS, Minneapolis, USA, 3-6 Sept. 2009. pp 6453–6.Google Scholar
  50. 50.
    Nayyar S, Roberts-Thomson KC, Hasan MA, Sullivan T, Harrington J, Sanders P, Baumert M (2013) Autonomic modulation of repolarization instability in patients with heart failure prone to ventricular tachycardia. Am J Physiol Heart Circ Physiol 305:H1181–H11H8CrossRefGoogle Scholar
  51. 51.
    Sutherland DJ, McPherson DD, Spencer CA, Armstrong CS, Horacek BM, Montague TJ (1983) Effects of posture and respiration on body surface electrocardiogram Am J Cardiol 52:595–600Google Scholar
  52. 52.
    Porter B, van Duijvenboden S, Bishop MJ, Orini M, Claridge S, Gould J, et al. (2018) Beat-to-beat variability of ventricular action potential duration oscillates at low frequency during sympathetic provocation in humans. Front Physiol 9:147Google Scholar
  53. 53.
    Hnatkova K, Johannesen L, Vicente J, Malik M (2017) Heart rate dependency of JT interval sections. J Electrocardiol 50:814–824CrossRefGoogle Scholar
  54. 54.
    Mincholé A, Pueyo E, Rodríguez JF, Zacur E, Doblaré M, Laguna P (2011) Quantification of restitution dispersion from the dynamic changes of the<formula formulatype="inline"><tex notation="TeX">$T$</tex></formula>-wave peak to end. Measured at the Surface ECG. IEEE Trans on Biomed Eng 58:1172–82Google Scholar
  55. 55.
    Malik M, Huikuri H, Lombardi F, Schmidt G, Zabel M, EHRA oboe-RSGo (2018) Conundrum of the Tpeak-Tend interval J Cardiovasc Electrophysiol 29:767–770Google Scholar
  56. 56.
    Carmeliet E (2006) Repolarization reserve in cardiac cells. J Med Biol Eng 26:97Google Scholar
  57. 57.
    Rizas KD, Hamm W, Kääb S, Schmidt G, Bauer A (2016) Periodic repolarisation dynamics: a natural probe of the ventricular response to sympathetic activation. Arrhythm Electrophysiol Rev 5:31–36Google Scholar
  58. 58.
    Wellens HJJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, et al. (2014) Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J 35:1642-51Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia
  2. 2.Department of Physiology and Biomedical Center BioMed Martin, Jessenius Faculty of MedicineComenius UniversityMartinSlovakia
  3. 3.Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
  4. 4.Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly

Personalised recommendations