Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0

  • Narendra N. Khanna
  • Ankush D. Jamthikar
  • Deep Gupta
  • Tadashi Araki
  • Matteo Piga
  • Luca Saba
  • Carlo Carcassi
  • Andrew Nicolaides
  • John R. Laird
  • Harman S. Suri
  • Ajay Gupta
  • Sophie Mavrogeni
  • Athanasios Protogerou
  • Petros Sfikakis
  • George D. Kitas
  • Jasjit S. SuriEmail author
Original Article


Today, the 10-year cardiovascular risk largely relies on conventional cardiovascular risk factors (CCVRFs) and suffers from the effect of atherosclerotic wall changes. In this study, we present a novel risk calculator AtheroEdge Composite Risk Score (AECRS1.0), designed by fusing CCVRF with ultrasound image-based phenotypes. Ten-year risk was computed using the Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score. AECRS1.0 was computed by measuring the 10-year five carotid phenotypes such as IMT (ave., max., min.), IMT variability, and total plaque area (TPA) by fusing eight CCVRFs and then compositing them. AECRS1.0 was then benchmarked against the five conventional cardiovascular risk calculators by computing the receiver operating characteristics (ROC) and area under curve (AUC) values with a 95% CI. Two hundred four IRB-approved Japanese patients’ left/right common carotid arteries (407 ultrasound scans) were collected with a mean age of 69 ± 11 years. The calculators gave the following AUC: FRS, 0.615; UKPDS56, 0.576; UKPDS60, 0.580; RRS, 0.590; PCRS, 0.613; and AECRS1.0, 0.990. When fusing CCVRF, TPA reported the highest AUC of 0.81. The patients were risk-stratified into low, moderate, and high risk using the standardized thresholds. The AECRS1.0 demonstrated the best performance on a Japanese diabetes cohort when compared with five conventional calculators.

Graphical abstract

AECRS1.0: Carotid ultrasound image phenotype-based 10-year cardiovascular risk calculator. The figure provides brief overview of the proposed carotid image phenotype-based 10-year cardiovascular risk calculator called AECRS1.0. AECRS1.0 was also benchmarked against five conventional cardiovascular risk calculators (Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score).


Atherosclerosis Stroke Conventional cardiovascular risk Ultrasound Carotid intima-media thickness 10-year risk prediction Composite risk score 


Compliance with ethical standards


Dr. Jasjit Suri is affiliated to AtheroPoint™, focused on the area of stroke and cardiovascular imaging.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11517_2019_1975_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 28 kb)


  1. 1.
    Acharya UR, Sree SV, Krishnan MMR, Molinari F, Saba L, Ho SYS, Ahuja AT, Ho SC, Nicolaides A, Suri JS (2012) Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med Biol 38:899–915CrossRefGoogle Scholar
  2. 2.
    Alsulaimani S, Gardener H, Elkind MS, Cheung K, Sacco RL, Rundek T (2013) Elevated homocysteine and carotid plaque area and densitometry in the Northern Manhattan Study. Stroke 44:457–461. CrossRefGoogle Scholar
  3. 3.
    Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GJ, McPherson R, Francis GA, Poirier P, Lau DC, Grover S (2013) 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol 29:151–167CrossRefGoogle Scholar
  4. 4.
    Baradaran H, Ng CR, Gupta A, Noor NM, Al-Dasuqi KW, Mtui EE, Rijal OM, Giannopoulos A, Nicolaides A, Laird JR (2017) Extracranial internal carotid artery calcium volume measurement using computer tomography. Int Angiol 36:445–461Google Scholar
  5. 5.
    Biswas M, Kuppili V, Araki T, Edla DR, Godia EC, Saba L, Suri HS, Omerzu T, Laird JR, Khanna NN, Nicolaides A, Suri JS (2018) Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort. Comput Biol Med 98:100–117. CrossRefGoogle Scholar
  6. 6.
    Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96:1432–1437CrossRefGoogle Scholar
  7. 7.
    Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, Clegg LX (1997) Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 146:483–494CrossRefGoogle Scholar
  8. 8.
    Chambless LE, Folsom AR, Clegg LX, Sharrett AR, Shahar E, Nieto FJ, Rosamond WD, Evans G (2000) Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol 151:478–487CrossRefGoogle Scholar
  9. 9.
    Conroy R, Pyörälä K, Fitzgerald AE, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003CrossRefGoogle Scholar
  10. 10.
    Cuadrado-Godia E, Maniruzzaman M, Araki T, Puvvula A, Rahman MJ, Saba L, Suri HS, Gupta A, Banchhor SK, Teji JS (2018) Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Comput Biol Med 101:128–145CrossRefGoogle Scholar
  11. 11.
    Cuadrado-Godia E, Srivastava SK, Saba L, Araki T, Suri HS, Giannopolulos A, Omerzu T, Laird J, Khanna NN, Mavrogeni S, Kitas GD, Nicolaides A, Suri JS (2018) Geometric total plaque area is an equally powerful phenotype compared with carotid intima-media thickness for stroke risk assessment: a deep learning approach. J Vasc Ultrasound 1544316718806421.
  12. 12.
    Cuadrado-Godia E, Jamthikar AD, Gupta D, et al (2019) Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design. Logistic regression approach. Computers in biology and medicine.
  13. 13.
    D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117:743–753CrossRefGoogle Scholar
  14. 14.
    Den Ruijter HM, Peters SA, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, Engstrom G, Evans GW, de Graaf J, Grobbee DE, Hedblad B, Hofman A, Holewijn S, Ikeda A, Kavousi M, Kitagawa K, Kitamura A, Koffijberg H, Lonn EM, Lorenz MW, Mathiesen EB, Nijpels G, Okazaki S, O’Leary DH, Polak JF, Price JF, Robertson C, Rembold CM, Rosvall M, Rundek T, Salonen JT, Sitzer M, Stehouwer CD, Witteman JC, Moons KG, Bots ML (2012) Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 308:796–803. CrossRefGoogle Scholar
  15. 15.
    Dong J-Y, Zhang Y-H, Qin L-Q (2011) Erectile dysfunction and risk of cardiovascular disease. J Am Coll Cardiol 58:1378–1385CrossRefGoogle Scholar
  16. 16.
    Duerden M, O’Flynn N, Qureshi N (2015) Cardiovascular risk assessment and lipid modification: NICE guideline. Br J Gen Pract 65:378–380CrossRefGoogle Scholar
  17. 17.
    Fan W, Ping Y (2011) Association of risk factors for cardiovascular disease and glomerular filtration rate: a community-based study of 4925 adults in Beijing. Heart 97:A95CrossRefGoogle Scholar
  18. 18.
    Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’agostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, O’donnell CJ (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2935–2959CrossRefGoogle Scholar
  19. 19.
    Helfand M, Buckley DI, Freeman M, Fu R, Rogers K, Fleming C, Humphrey LL (2009) Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med 151:496–507CrossRefGoogle Scholar
  20. 20.
    Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, Brindle P (2008) Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 336:1475–1482CrossRefGoogle Scholar
  21. 21.
    Hippisley-Cox J, Coupland C, Brindle P (2017) Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357:1-12.
  22. 22.
    Ikeda N, Saba L, Molinari F, Piga M, Meiburger K, Sugi K, Porcu M, Bocchiddi L, Acharya UR, Nakamura M, Nakano M, Nicolaides A, Suri JS (2013) Automated carotid intima-media thickness and its link for prediction of SYNTAX score in Japanese coronary artery disease patients. Int Angiol 32:339–348Google Scholar
  23. 23.
    Ikeda N, Araki T, Sugi K, Nakamura M, Deidda M, Molinari F, Meiburger KM, Acharya UR, Saba L, Bassareo PP, Di Martino M, Nagashima Y, Mercuro G, Nakano M, Nicolaides A, Suri JS (2014) Ankle-brachial index and its link to automated carotid ultrasound measurement of intima-media thickness variability in 500 Japanese coronary artery disease patients. Curr Atheroscler Rep 16:393. CrossRefGoogle Scholar
  24. 24.
    Johnsen SH, Mathiesen EB, Joakimsen O, Stensland E, Wilsgaard T, Løchen M-L, Njølstad I, Arnesen E (2007) Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromsø Study. Stroke 38:2873–2880CrossRefGoogle Scholar
  25. 25.
    Kothari V, Stevens RJ, Adler AI, Stratton IM, Manley SE, Neil HA, Holman RR (2002) UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke 33:1776–1781CrossRefGoogle Scholar
  26. 26.
    Kumar PK, Araki T, Rajan J, Saba L, Lavra F, Ikeda N, Sharma AM, Shafique S, Nicolaides A, Laird JR (2017) Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach. Med Biol Eng Comput 55:1415–1434CrossRefGoogle Scholar
  27. 27.
    Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M (2006) Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke 37:87–92CrossRefGoogle Scholar
  28. 28.
    Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Völzke H, Tuomainen T-P, Sander D, Plichart M, Catapano AL, Robertson CM (2012) Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 379:2053–2062CrossRefGoogle Scholar
  29. 29.
    Lucatelli P, Raz E, Saba L, Argiolas GM, Montisci R, Wintermark M, King KS, Molinari F, Ikeda N, Siotto P (2016) Relationship between leukoaraiosis, carotid intima-media thickness and intima-media thickness variability: preliminary results. Eur Radiol 26:4423–4431CrossRefGoogle Scholar
  30. 30.
    Mathiesen Ellisiv B, Johnsen Stein H, Wilsgaard T, Bønaa Kaare H, Løchen M-L, Njølstad I (2011) Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke. Stroke 42:972–978. CrossRefGoogle Scholar
  31. 31.
    Molinari F, Zeng G, Suri JS (2010) Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement. IEEE Trans Ultrason Ferroelectr Freq Control 57:1112–1124. CrossRefGoogle Scholar
  32. 32.
    Molinari F, Zeng G, Suri JS (2010) A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Prog Biomed 100:201–221. CrossRefGoogle Scholar
  33. 33.
    Molinari F, Meiburger KM, Saba L, Zeng G, Acharya UR, Ledda M, Nicolaides A, Suri JS (2012) Fully automated dual-snake formulation for carotid intima-media thickness measurement: a new approach. J Ultrasound Med 31:1123–1136CrossRefGoogle Scholar
  34. 34.
    Molinari F, Meiburger KM, Zeng G, Acharya UR, Liboni W, Nicolaides A, Suri JS (2012) Carotid artery recognition system: a comparison of three automated paradigms for ultrasound images. Med Phys 39:378–391. CrossRefGoogle Scholar
  35. 35.
    Molinari F, Meiburger KM, Zeng G, Saba L, Rajendra Acharya U, Famiglietti L, Georgiou N, Nicolaides A, Sriswan Mamidi R, Kuper H, Suri JS (2012) Automated carotid IMT measurement and its validation in low contrast ultrasound database of 885 patient Indian population epidemiological study: results of AtheroEdge software. Int Angiol 31:42–53Google Scholar
  36. 36.
    Molinari F, Pattichis CS, Zeng G, Saba L, Acharya UR, Sanfilippo R, Nicolaides A, Suri JS (2012) Completely automated multiresolution edge snapper—a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database. IEEE Trans Image Process 21:1211–1222CrossRefGoogle Scholar
  37. 37.
    Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, Volcik K, Boerwinkle E, Ballantyne CM (2010) Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol 55:1600–1607CrossRefGoogle Scholar
  38. 38.
    O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376:112–123CrossRefGoogle Scholar
  39. 39.
    O’Leary DH, Bots ML (2010) Imaging of atherosclerosis: carotid intima–media thickness. Eur Heart J 31:1682–1689CrossRefGoogle Scholar
  40. 40.
    O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med 340:14–22CrossRefGoogle Scholar
  41. 41.
    Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr (2011) Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 365:213–221. CrossRefGoogle Scholar
  42. 42.
    Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. Jama 297:611–619CrossRefGoogle Scholar
  43. 43.
    Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR (2008) C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation 118:2243–2251CrossRefGoogle Scholar
  44. 44.
    Romanens M, Mortensen MB, Sudano I, Szucs T, Adams A (2017) Extensive carotid atherosclerosis and the diagnostic accuracy of coronary risk calculators. Prev Med Rep 6:182–186. CrossRefGoogle Scholar
  45. 45.
    Rosengren A, Hawken S, Ôunpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S (2004) Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet 364:953–962CrossRefGoogle Scholar
  46. 46.
    Rosvall M, Janzon L, Berglund G, Engström G, Hedblad B (2005) Incident coronary events and case fatality in relation to common carotid intima-media thickness. J Intern Med 257:430–437CrossRefGoogle Scholar
  47. 47.
    Rundek T, Spence JD (2013) Ultrasonographic measure of carotid plaque burden. JACC Cardiovasc Imaging 6:129CrossRefGoogle Scholar
  48. 48.
    Saba L, Mallarini G, Sanfilippo R, Zeng G, Montisci R, Suri J (2012) Intima media thickness variability (IMTV) and its association with cerebrovascular events: a novel marker of carotid therosclerosis? Cardiovasc Diagn Ther 2:10–18. Google Scholar
  49. 49.
    Saba L, Molinari F, Meiburger KM, Piga M, Zeng G, Rajendra Achraya U, Nicolaides A, Suri JS (2012) What is the correct distance measurement metric when measuring carotid ultrasound intima-media thickness automatically? Int Angiol 31:483–489Google Scholar
  50. 50.
    Saba L, Montisci R, Molinari F, Tallapally N, Zeng G, Mallarini G, Suri JS (2012) Comparison between manual and automated analysis for the quantification of carotid wall by using sonography. A validation study with CT. Eur J Radiol 81:911–918. CrossRefGoogle Scholar
  51. 51.
    Saba L, Banchhor SK, Suri HS, Londhe ND, Araki T, Ikeda N, Viskovic K, Shafique S, Laird JR, Gupta A (2016) Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: a web-based point-of-care tool for multicenter clinical trial. Comput Biol Med 75:217–234CrossRefGoogle Scholar
  52. 52.
    Saba L, Jain PK, Suri HS, Ikeda N, Araki T, Singh BK, Nicolaides A, Shafique S, Gupta A, Laird JR (2017) Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm. J Med Syst 41:98CrossRefGoogle Scholar
  53. 53.
    Saba L, Banchhor SK, Araki T, et al (2018) Intraand Inter-operator Reproducibility Analysis of Automated Cloud-based Carotid Intima Media Thickness Ultrasound Measurement. Journal of Clinical & Diagnostic Research, 12(2):KC01-KC11.
  54. 54.
    Saba L, Banchhor SK, Araki T, Viskovic K, Londhe ND, Laird JR, Suri HS, Suri JS (2018) Intra-and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement. Indian Heart J 70:649–664CrossRefGoogle Scholar
  55. 55.
    Salonen JT, Salonen R (1991) Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb Vasc Biol 11:1245–1249CrossRefGoogle Scholar
  56. 56.
    Seabra J, Sanches JM (2012) RF ultrasound estimation from b-mode images. In Ultrasound Imaging. Springer 3-24Google Scholar
  57. 57.
    Sharma AM, Gupta A, Kumar PK, Rajan J, Saba L, Nobutaka I, Laird JR, Nicolades A, Suri JS (2015) A review on carotid ultrasound atherosclerotic tissue characterization and stroke risk stratification in machine learning framework. Curr Atheroscler Rep 17:55CrossRefGoogle Scholar
  58. 58.
    Spence JD, Solo K (2017) Resistant atherosclerosis: the need for monitoring of plaque burden. Stroke 48:1624–1629CrossRefGoogle Scholar
  59. 59.
    Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T (2002) Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke 33:2916–2922CrossRefGoogle Scholar
  60. 60.
    Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21:93–111CrossRefGoogle Scholar
  61. 61.
    Stevens RJ, Kothari V, Adler AI, Stratton IM, Holman RR (2001) The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin Sci 101:671–679CrossRefGoogle Scholar
  62. 62.
    Stone NJ, Robinson JG, Lichtenstein AH, Merz CNB, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2889–2934CrossRefGoogle Scholar
  63. 63.
    Sturlaugsdottir R, Aspelund T, Bjornsdottir G, Sigurdsson S, Thorsson B, Eiriksdottir G, Gudnason V (2018) Predictors of carotid plaque progression over a 4-year follow-up in the Reykjavik REFINE-study. Atherosclerosis 269:57–62CrossRefGoogle Scholar
  64. 64.
    Suri JS, Haralick RM, Sheehan FH (2000) Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal Applic 3:39–60CrossRefGoogle Scholar
  65. 65.
    U.S. Preventive Services Task Force (2009) Using nontraditional risk factors in coronary heart disease risk assessment: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 151:474–482CrossRefGoogle Scholar
  66. 66.
    WHO. Cardiovascular disease Accessed 1 Oct 2018
  67. 67.
    Yang X, So W-Y, Kong AP, Ho C-S, Lam CW, Stevens RJ, Lyu RR, Yin DD, Cockram CS, Tong PC (2007) Development and validation of stroke risk equation for Hong Kong Chinese patients with type 2 diabetes: the Hong Kong Diabetes Registry. Diabetes Care 30:65–70CrossRefGoogle Scholar
  68. 68.
    Yayan J (2012) Erythrocyte sedimentation rate as a marker for coronary heart disease. Vasc Health Risk Manag 8:219CrossRefGoogle Scholar
  69. 69.
    Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, Blumenthal RS, Budoff MJ (2013) High-sensitivity C-reactive protein and cardiovascular disease. J Am Coll Cardiol 62:397–408CrossRefGoogle Scholar
  70. 70.
    Zingg S, Collet T-H, Locatelli I, Nanchen D, Depairon M, Bovet P, Cornuz J, Rodondi N (2015) Associations between cardiovascular risk factors, inflammation, and progression of carotid atherosclerosis among smokers. Nicotine Tob Res 18:1533–1538CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2019

Authors and Affiliations

  • Narendra N. Khanna
    • 1
  • Ankush D. Jamthikar
    • 2
  • Deep Gupta
    • 2
  • Tadashi Araki
    • 3
  • Matteo Piga
    • 4
  • Luca Saba
    • 5
  • Carlo Carcassi
    • 6
  • Andrew Nicolaides
    • 7
  • John R. Laird
    • 8
  • Harman S. Suri
    • 9
  • Ajay Gupta
    • 10
  • Sophie Mavrogeni
    • 11
  • Athanasios Protogerou
    • 12
  • Petros Sfikakis
    • 13
  • George D. Kitas
    • 14
  • Jasjit S. Suri
    • 15
    Email author
  1. 1.Department of CardiologyIndraprastha Apollo HospitalsNew DelhiIndia
  2. 2.Department of ECEVisvesvaraya National Institute of TechnologyNagpurIndia
  3. 3.Division of Cardiovascular MedicineToho UniversityTokyoJapan
  4. 4.Department of RheumatologyUniversity of CagliariCagliariItaly
  5. 5.Department of RadiologyUniversity of CagliariCagliariItaly
  6. 6.Department of GeneticsUniversity of CagliariCagliariItaly
  7. 7.Vascular Diagnostic CenterUniversity of CyprusNicosiaCyprus
  8. 8.Heart and Vascular InstituteAdventist Health St. HelenaSt. HelenaUSA
  9. 9.Brown UniversityProvidenceUSA
  10. 10.Department of RadiologyCornell Medical CenterNew YorkUSA
  11. 11.Cardiology ClinicOnassis Cardiac Surgery CenterAthensGreece
  12. 12.Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of PathophysiologyNational and Kapodistrian University of AthensAthensGreece
  13. 13.Rheumatology UnitNational Kapodistrian University of AthensAthensGreece
  14. 14.Research & Development-Academic AffairsDudley Group NHS Foundation TrustDudleyUK
  15. 15.Stroke Monitoring and Diagnostic DivisionAtheroPoint™RosevilleUSA

Personalised recommendations