Medical & Biological Engineering & Computing

, Volume 57, Issue 6, pp 1381–1392 | Cite as

Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study

  • Manon Sterba
  • Carl-Éric AubinEmail author
  • Eric Wagnac
  • Leo Fradet
  • Pierre-Jean Arnoux
Original Article


Traumatic events may lead to lumbar spine injuries ranging from low severity bony fracture to complex fracture dislocation. Injury pathomechanisms as well as the influence of loading rate and ligament mechanical properties were not yet fully elucidated. The objective was to quantify the influence of impact velocity and ligament properties variability on the lumbar spine response in traumatic flexion-shear conditions. An L1-L3 finite element spinal segment was submitted to a posterior-anterior impact at three velocities (2.7, 5, or 10 m/s) and for 27 sets of ligament properties. Spinal injury pathomechanism varied according to the impact velocities: initial osseous compression in the anterior column for low and medium velocities versus distraction in the posterior column for high velocity. Impact at 2.7 and 5 m/s lead to higher extent of bony injury, i.e., volume of ruptured bone, compared to the impact at 10 m/s (1140, 1094, and 718 mm3 respectively), lower L2 anterior displacement (2.09, 5.36, and 7.72 mm respectively), and lower facet fracture occurrence. Ligament properties had no effect on bony injury initiation but influenced the presence of facet fracture. These results improve the understanding of lumbar injury pathomechanisms and provide additional knowledge of lumbar injury load thresholds that could be used for injury prevention.

Graphical abstract

Stress distribution analysis at the injury initiation and final injury pattern identification for a lumbar segment submitted to a traumatic posterior-anterior impact.


Lumbar spine Finite element model Trauma Injury Pathomechanism Ligament 



Special thanks to Yvan Petit who contributed to the development of the SM2S base finite element model used in this study, as part of the iLab-Spine initiative funded by the A*MIDEX Foundation (Aix-Marseille University Initiative of Excellence, no. ANR 11-IDEX-0001-02).

Funding information

This study was financially supported by the Natural Sciences and Engineering Research Council of Canada (Industrial Research Chair program with Medtronic of Canada).

Supplementary material

11517_2019_1964_MOESM1_ESM.xlsx (27 kb)
ESM 1 (XLSX 26 kb)


  1. 1.
    Leucht P, Fischer K, Muhr G, Mueller EJ (2009) Epidemiology of traumatic spine fractures. Injury 40:166–172CrossRefGoogle Scholar
  2. 2.
    Rajasekaran S, Kanna RM, Shetty AP (2015) Management of thoracolumbar spine trauma: an overview. Indian J Orthop 49:72–82CrossRefGoogle Scholar
  3. 3.
    Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831CrossRefGoogle Scholar
  4. 4.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefGoogle Scholar
  5. 5.
    Vaccaro AR, Lehman RA Jr, Hurlbert J, Anderson PA, Harris M, Fehlings MG et al (2005) A new classification of thoracolumbar injuries. Spine 30:2325–2333CrossRefGoogle Scholar
  6. 6.
    Aebi M (2010) Classification of thoracolumbar fractures and dislocations. Eur Spine J 19:2–7CrossRefGoogle Scholar
  7. 7.
    Joaquim AF, Patel AA, Schroeder GD, Vaccaro AR (2018) A simplified treatment algorithm for treating thoracic and lumbar spine trauma. J Spinal Cord Med:1–11Google Scholar
  8. 8.
    Santiago FR, Muñoz PT, Sánchez EM, Paniza MR, Martínez AM, Abela ALP (2016) Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg 6:772–784CrossRefGoogle Scholar
  9. 9.
    Yoganandan N, Nahum AM, Melvin JW (2014) Accidental injury: biomechanics and prevention. Springer, BerlinGoogle Scholar
  10. 10.
    Hoshikawa T, Tanaka Y, Kokubun S, Lu WW, Luk KD, Leong JC (2002) Flexion–distraction injuries in the thoracolumbar spine: an in vitro study of the relation between flexion angle and the motion axis of fracture. Clinical Spine Surgery 15:139–143Google Scholar
  11. 11.
    Ivancic PC (2014) Biomechanics of thoracolumbar burst and chance-type fractures during fall from height. Global Spine J 4:161–168CrossRefGoogle Scholar
  12. 12.
    Stemper BD, Pintar FA, Baisden JL (2015) Lumbar spine Injury biomechanics. In: Yoganandan N, Nahum AM, Melvin JW (eds) Accidental injury: biomechanics and prevention. Springer, New York, pp 451–470Google Scholar
  13. 13.
    Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ (2014) Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 52:87–94CrossRefGoogle Scholar
  14. 14.
    Osvalder AL, Neumann P, Lövsund P, Nordwall A (1993) A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J Biomech 26:1227–1236CrossRefGoogle Scholar
  15. 15.
    Lee KK, Teo EC (2005) Material sensitivity study on lumbar motion segment (L2-L3) under sagittal plane loadings using probabilistic method. J Spinal Disord Tech 18:163–170CrossRefGoogle Scholar
  16. 16.
    Mattucci SF, Moulton JA, Chandrashekar N, Cronin DS (2012) Strain rate dependent properties of younger human cervical spine ligaments. J Mech Behav Biomed Mater 10:216–226CrossRefGoogle Scholar
  17. 17.
    Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine 32:2970–2979CrossRefGoogle Scholar
  18. 18.
    Coombs DJ, Rullkoetter PJ, Laz PJ (2016) Quantifying variability in lumbar L4-L5 soft tissue properties for use in finite-element analysis. J Verif Valid Uncert 1:031007CrossRefGoogle Scholar
  19. 19.
    Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M (2018) Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech 70:33–42CrossRefGoogle Scholar
  20. 20.
    Putzer M, Auer S, Malpica W, Suess F, Dendorfer S (2016) A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet Disord 17:95CrossRefGoogle Scholar
  21. 21.
    Schmitt K-U, Zürich PFNE, Muser MH, Walz F (2013) Trauma biomechanics: introduction to accidental injury. Springer Science & Business Media, BerlinGoogle Scholar
  22. 22.
    Zheng J, Tang L, Hu J (2018) A numerical investigation of risk factors affecting lumbar spine injuries using a detailed lumbar model. Appl Bionics Biomech 2018:1–8CrossRefGoogle Scholar
  23. 23.
    El-Rich M, Arnoux P-J, Wagnac E, Brunet C, Aubin C-E (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42:1252–1262CrossRefGoogle Scholar
  24. 24.
    Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915CrossRefGoogle Scholar
  25. 25.
    Ogden RW (1984) Non-linear elastic deformations. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Wagnac E, Arnoux P-J, Garo A, El-Rich M, Aubin C-E (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133:101007CrossRefGoogle Scholar
  27. 27.
    Garo A, Arnoux PJ, Wagnac E, Aubin CE (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49:1371–1379CrossRefGoogle Scholar
  28. 28.
    Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25:1351–1356CrossRefGoogle Scholar
  29. 29.
    White AA, Panjabi MM (1990) Clinical biomechanics of the spine, vol 2. Lippincott, PhiladelphiaGoogle Scholar
  30. 30.
    Ivancic PC, Coe MP, Ndu AB, Tominaga Y, Carlson EJ, Rubin W, Dipl-Ing FH, Panjabi MM (2007) Dynamic mechanical properties of intact human cervical spine ligaments. Spine J 7:659–665CrossRefGoogle Scholar
  31. 31.
    Iwaskiw AS, Armiger RS, Ott KA, Wickwire ACM, Merkle AC (2012) Response of individual thoracolumbar spine ligaments under high-rate deformation. Biomed Sci Instrum 48:194–201Google Scholar
  32. 32.
    Butt AM, Gill C, Demerdash A, Watanabe K, Loukas M, Rozzelle CJ, Tubbs RS (2015) A comprehensive review of the sub-axial ligaments of the vertebral column: part I anatomy and function. Childs Nerv Syst 31:1037–1059CrossRefGoogle Scholar
  33. 33.
    Lasswell TL, Cronin DS, Medley JB, Rasoulinejad P (2017) Incorporating ligament laxity in a finite element model for the upper cervical spine. Spine J 17:1755–1764CrossRefGoogle Scholar
  34. 34.
    Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke H-J (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384CrossRefGoogle Scholar
  35. 35.
    Jaramillo HE, Puttlitz CM, McGilvray K, García JJ (2016) Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. J Biomech 49:1248–1254CrossRefGoogle Scholar
  36. 36.
    Schwab F, Lafage V, Boyce R, Skalli W, Farcy J-P (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31:E959–E967CrossRefGoogle Scholar
  37. 37.
    Belwadi A, Yang K (2008) Response of the cadaveric lumbar spine to flexion with and without anterior shear displacement. In: Proc IRCOBI Conf, pp 397–410Google Scholar
  38. 38.
    Stemper BD, Pintar FA, Baisden JL (2015) Lumbar spine injury biomechanics. In: Accidental Injury (ed) Springer, pp 451–470Google Scholar
  39. 39.
    Tsou PM, Wang J, Khoo L, Shamie AN, Holly L (2006) A thoracic and lumbar spine injury severity classification based on neurologic function grade, spinal canal deformity, and spinal biomechanical stability. Spine J 6:636–647CrossRefGoogle Scholar
  40. 40.
    Mitchell R, Bambach M, Toson B (2015) Injury risk for matched front and rear seat car passengers by injury severity and crash type: an exploratory study. Accid Anal Prev 82:171–179CrossRefGoogle Scholar
  41. 41.
    Müller CW, Otte D, Decker S, Stübig T, Panzica M, Krettek C, Brand S (2014) Vertebral fractures in motor vehicle accidents–a medical and technical analysis of 33,015 injured front-seat occupants. Accid Anal Prev 66:15–19CrossRefGoogle Scholar
  42. 42.
    Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46:2342–2355CrossRefGoogle Scholar
  43. 43.
    Siegmund GP, Chimich v, Elkin BS (2015) Role of muscles in accidental injury. In: Accidental injury (ed) Springer, pp 611–642Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2019

Authors and Affiliations

  • Manon Sterba
    • 1
    • 2
    • 3
    • 4
    • 5
  • Carl-Éric Aubin
    • 1
    • 3
    • 4
    Email author
  • Eric Wagnac
    • 4
    • 6
    • 7
  • Leo Fradet
    • 1
    • 3
    • 4
  • Pierre-Jean Arnoux
    • 2
    • 5
  1. 1.Department of Mechanical EngineeringPolytechnique MontréalMontrealCanada
  2. 2.Laboratoire de Biomécanique Appliquée, IFSTTAR, LBA UMR T24Aix-Marseille UniversitéMarseille CedexFrance
  3. 3.Research Center, Sainte-Justine University Hospital CenterMontrealCanada
  4. 4.iLab-Spine (International Laboratory - Spine Imaging and Biomechanics)MontrealCanada
  5. 5.iLab-Spine (International Laboratory - Spine Imaging and Biomechanics)MarseilleFrance
  6. 6.Mechanical Engineering DepartmentÉcole de technologie supérieureMontrealCanada
  7. 7.Research Center, Hôpital du Sacré-CœurMontrealCanada

Personalised recommendations