Medical & Biological Engineering & Computing

, Volume 57, Issue 3, pp 633–642 | Cite as

Intertrochanteric fracture visualization and analysis using a map projection technique

  • Yucheng Fu
  • Rong Liu
  • Yang LiuEmail author
  • Jiawei Lu
Original Article


Understanding intertrochanteric fracture distribution is an important topic in orthopedics due to its high morbidity and mortality. The intertrochanteric fracture can contain high-dimensional information including complicated 3D fracture lines, which often make it difficult to visualize or to obtain valuable statistics for clinical diagnosis and prognosis applications. This paper proposed a map projection technique to map the high-dimensional information into a 2D parametric space. This method can preserve the 3D proximal femur surface and structure while visualizing the entire fracture line with a single plot/view. Using this method and a standardization technique, a total of 100 patients with different ages and genders are studied based on the original radiographs acquired by CT scan. The comparison shows that the proposed map projection representation is more efficient and rich in information visualization than the conventional heat map technique. Using the proposed method, a fracture probability can be obtained at any location in the 2D parametric space, from which the most probable fracture region can be accurately identified. The study shows that age and gender have significant influences on intertrochanteric fracture frequency and fracture line distribution.

Graphical abstract

Generation of 2D parametric map for intertrochanteric fracture probability visualization.


Intertrochanteric fracture 2D map projection Fracture line visualization Heat map 3D computed tomography 



The authors would like to thank the Institutional Ethics Committee of PuRen Hospital for providing the data used in this study. One of the authors, Rong Liu, would like to acknowledge the support from the Wuhan City Health and Family Planning Scientific Research Project (grant no. WX16B21), Hubei Province Health and Family Planning Scientific Research Project (grant nos. WJ2017F032 and WJ2018H0042) and Metallurgical Safety and Health Branch of China Metals Society Health Research Project (grant no. JKWS201620).

Supplementary material

11517_2018_1905_MOESM1_ESM.docx (2.4 mb)
Fig. A.1 Proximal femur fracture distribution for three age groups: (a) 30–50 years old, (b) 50–70 years old and (c) 70–100 years old, using the four anatomical views (DOCX 2.38 mb)
11517_2018_1905_MOESM2_ESM.docx (1.6 mb)
Fig. A.2 Proximal femur fracture distribution for two gender groups: (a) males, (b) females, using the four anatomical views (DOCX 1.63 mb)


  1. 1.
    Mears SC (2014) Classification and surgical approaches to hip fractures for nonsurgeons. Clin Geriatr Med 30:229–241CrossRefPubMedGoogle Scholar
  2. 2.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, a DeCoster T, Prokuski L, Sirkin MS, Ziran B, Henley B, Audigé L (2007) Fracture and dislocation classification compendium - 2007: Orthopaedic trauma association classification, database and outcomes committee. J Orthop Trauma 21:S1–S133CrossRefPubMedGoogle Scholar
  3. 3.
    Garden E, RS P (1961) Low angle fixation in fractures of the femoral neck. Surger 101:647Google Scholar
  4. 4.
    Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, Ebeling PR, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen Howe T, Van Der Meulen MCH, Weinstein RS, Whyte MP (2014) Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res 29:1–23CrossRefPubMedGoogle Scholar
  5. 5.
    Ahn J, Bernstein J (2010) Fractures in brief; intertrochanteric hip fractures. Clin Orthop Relat Res 468:1450–1452CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mundi S, Pindiprolu B, Simunovic N, Bhandari M (2014) Similar mortality rates in hip fracture patients over the past 31 years. Acta Orthop 85:54–59CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cole PA, Mehrle RK, Bhandari M, Zlowodzki M (2013) The Pilon map: fracture lines and comminution zones in OTA/AO type 43C3 Pilon fractures. J Orthop Trauma 27:e152–e156CrossRefPubMedGoogle Scholar
  8. 8.
    Molenaars RJ, Mellema JJ, Doornberg JN, Kloen P (2015) Tibial plateau fracture characteristics: computed tomography mapping of lateral, medial, and bicondylar fractures. J Bone Jt Surg - Am Vol 97:1512–1520CrossRefGoogle Scholar
  9. 9.
    Lubovsky O, Kreder M, Wright DA, Kiss A, Gallant A, Kreder HJ, Whyne CM (2013) Quantitative measures of damage to subchondral bone are associated with functional outcome following treatment of displaced acetabular fractures. J Orthop Res 31:1980–1985CrossRefPubMedGoogle Scholar
  10. 10.
    Misir A, Ozturk K, Kizkapan TB, Yildiz KI, Gur V, Sevencan A (2018) Fracture lines and comminution zones in OTA/AO type 23C3 distal radius fractures: The distal radius map. J Orthop Surg 26Google Scholar
  11. 11.
    Armitage BM, Wijdicks CA, Tarkin IS, Schroder LK, Marek DJ, Zlowodzki M, Cole PA (2009) Mapping of scapular fractures with three-dimensional computed tomography. J Bone Jt Surg - Ser A 91:2222–2228CrossRefGoogle Scholar
  12. 12.
    Mellema JJ, Eygendaal D, van Dijk CN, Ring D, Doornberg JN (2016) Fracture mapping of displaced partial articular fractures of the radial head. J Shoulder Elb Surg 25:1509–1516CrossRefGoogle Scholar
  13. 13.
    Sendra GH, Hoerth CH, Wunder C, Lorenz H (2015) 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs. Sci Rep 5:1–6CrossRefGoogle Scholar
  14. 14.
    Nyrtsov MV (2003) The classification of projections of irregularly-shaped celestial bodies. Proc 21st Int Cartogr Conf:1158–1164Google Scholar
  15. 15.
    Yang Q, Snyder J, Tobler W (1999) Map Projection Transformation: Principles and Applications, CRC PressGoogle Scholar
  16. 16.
    Standring S (2016) Gray’s Anatomy 41thGoogle Scholar
  17. 17.
    Williams SE, Linton NWF, Niederer S, O’Neill MD (2017) Simultaneous display of multiple three-dimensional electrophysiological datasets (dot mapping). Europace 19:1743–1749CrossRefPubMedGoogle Scholar
  18. 18.
    Jensen JS (1980) Classification of trochanteric fractures. Acta Orthop 51:803–810CrossRefGoogle Scholar
  19. 19.
    Haidukewych GJ, a Israel T, Berry DJ (2001) Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am 83–A:643–650Google Scholar
  20. 20.
    Fox KM, Cummings SR, Williams E, Stone K (2000) International original article femoral neck and intertrochanteric fractures have different risk factors : a prospective study. Osteoporos Int 11:1018–1023CrossRefPubMedGoogle Scholar
  21. 21.
    Karagas MR, Lu-Yao GL, Barrett JA, Beach ML, Baron JA (1996) Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol 143:677–682CrossRefPubMedGoogle Scholar
  22. 22.
    Gullberg B, Johnell O, Kanis JA (1997) International original article world-wide projections for hip fracture. Osteoporos Int 44:407–413CrossRefGoogle Scholar
  23. 23.
    Bjørgul K, Reikerås O (2007) Incidence of hip fracture in southeastern Norway: a study of 1,730 cervical and trochanteric fractures. Int Orthop 31:665–669CrossRefPubMedGoogle Scholar
  24. 24.
    Tanner DA, Kloseck M, Crilly RG, Chesworth B, Gilliland J (2010) Hip fracture types in men and women change differently with age. BMCGeriatr 10:12Google Scholar
  25. 25.
    Melton LJ 3rd, Ilstrup DM, Riggs BL, Beckenbaugh RD (1982) Fifty-year trend in hip fracture incidence, Clin Orthop. 144–149Google Scholar
  26. 26.
    Beauchet O, Annweiler C, Allali G, Berrut G, Herrmann FR, Dubost V (2008) Recurrent falls and dual task-related decrease in walking speed: is there a relationship? J Am Geriatr Soc 56:1265–1269CrossRefPubMedGoogle Scholar
  27. 27.
    Nevitt MC, Curnrnings SR (1993) Type of Fall and Risk of Hip and Wrist fractures: the study of osteoporotic fractures 1226–1234Google Scholar
  28. 28.
    Ford CM, Keaveny TM, Hayes WC (1996) The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 11:377–383CrossRefPubMedGoogle Scholar
  29. 29.
    Chen PH, Wu CC, Tseng YC, Fan KF, Lee PC, Chen WJ (2012) Comparison of elderly patients with and without intertrochanteric fractures and the factors affecting fracture severity. Formos J Musculoskelet Disord 3:61–65CrossRefGoogle Scholar
  30. 30.
    Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261CrossRefPubMedGoogle Scholar
  31. 31.
    Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop 51:429–437CrossRefGoogle Scholar
  32. 32.
    Martens M, Van Audekercke R, Delport P, De Meester P, Mulier JC (1983) The mechanical characteristics of cancellous bone at the upper femoral region. J Biomech 16:971–983CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  1. 1.Nuclear Engineering Program, Mechanical Engineering DepartmentVirginia TechBlacksburgUSA
  2. 2.Department of OrthopadicsPuRen Hospital Affiliated with Wuhan University of Science and TechnologyQingshan DistrictChina
  3. 3.Department of Orthopadics, First Affiliated HospitalDalian Medical UniversityDalianChina

Personalised recommendations