Advertisement

Can one detect atrial fibrillation using a wrist-type photoplethysmographic device?

  • Sibylle Fallet
  • Mathieu Lemay
  • Philippe Renevey
  • Célestin Leupi
  • Etienne Pruvot
  • Jean-Marc Vesin
Original article

Abstract

This study aims at evaluating the potential of a wrist-type photoplethysmographic (PPG) device to discriminate between atrial fibrillation (AF) and other types of rhythm. Data from 17 patients undergoing catheter ablation of various arrhythmias were processed. ECGs were used as ground truth and annotated for the following types of rhythm: sinus rhythm (SR), AF, and ventricular arrhythmias (VA). A total of 381/1370/415 10-s epochs were obtained for the three categories, respectively. After pre-processing and removal of segments corresponding to motion artifacts, two different types of feature were derived from the PPG signals: the interbeat interval-based features and the wave-based features, consisting of complexity/organization measures that were computed either from the PPG waveform itself or from its power spectral density. Decision trees were used to assess the discriminative capacity of the proposed features. Three classification schemes were investigated: AF against SR, AF against VA, and AF against (SR&VA). The best results were achieved by combining all features. Accuracies of 98.1/95.9/95.0 %, specificities of 92.4/88.7/92.8 %, and sensitivities of 99.7/98.1/96.2 % were obtained for the three aforementioned classification schemes, respectively.

Graphical Abstract

Atrial fibrillation detection using PPG signals

Keywords

Photoplethysmography Arrhythmias Atrial fibrillation 

Notes

Funding information

This work was funded thanks to the Swiss NanoTera initiative, NTF project MiniHolter.

References

  1. 1.
    Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1–39.  https://doi.org/10.1088/0967-3334/28/3/R01 CrossRefGoogle Scholar
  2. 2.
    Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174,102.  https://doi.org/10.1103/PhysRevLett.88.174102 CrossRefGoogle Scholar
  3. 3.
    Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94. AAAI Press, Seattle, pp 359–370Google Scholar
  4. 4.
    Bonomi AG, Schipper F, Eerikäinen L, Margarito J, Aarts RM, Babaeizadeh S, Morree HM, Dekker L (2016) Atrial fibrillation detection using photo-plethysmography and acceleration data at the wrist. In: 2016 Computing in CardiologyGoogle Scholar
  5. 5.
    Buttu A, Pruvot E, Van Zaen J, Viso A, Forclaz A, Pascale P, Narayan SM, Vesin JM (2013) Adaptive frequency tracking of the baseline ECG identifies the site of atrial fibrillation termination by catheter ablation. Biomed Signal Process Control 8(6):969–980.  https://doi.org/10.1016/j.bspc.2013.02.005 CrossRefGoogle Scholar
  6. 6.
    Chong JW, Esa N, McManus DD, Chon KH (2015) Arrhythmia discrimination using a smart phone. IEEE J Biomed Health Inf 19(3):815–824.  https://doi.org/10.1109/JBHI.2015.2418195 Google Scholar
  7. 7.
    Conroy T, Guzman JH, Hall B, Tsouri G, Couderc JP (2017) Detection of atrial fibrillation using an earlobe photoplethysmographic sensor. Physiol Meas 38(10):1906.  https://doi.org/10.1088/1361-6579/aa8830 CrossRefGoogle Scholar
  8. 8.
    Corino VDA, Laureanti R, Ferranti L, Scarpini G, Lombardi F, Mainardi LT (2017) Detection of atrial fibrillation episodes using a wristband device. Physiol Meas 38(5):787.  https://doi.org/10.1088/1361-6579/aa5dd7 CrossRefGoogle Scholar
  9. 9.
    (ehra) DwtscotEHRA, (eacts) EbtEAfCTS, Members AF, Camm AJ, Kirchhof P, Lip GYH, Schotten U, Savelieva I, Ernst S, Gelder ICV, Al-Attar N, Hindricks G, Prendergast B, Heidbuchel H, Alfieri O, Angelini A, Atar D, Colonna P, Caterina RD, Sutter JD, Goette A, Gorenek B, Heldal M, Hohloser SH, Kolh P, Heuzey JYL, Ponikowski P, Rutten FH, (cpg) ECfPG, Vahanian A, Auricchio A, Bax J, Ceconi C, Dean V, Filippatos G, Funck-Brentano C, Hobbs R, Kearney P, McDonagh T, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Vardas PE, Widimsky P, Reviewers D, Vardas PE, Agladze V, Aliot E, Balabanski T, Blomstrom-Lundqvist C, Capucci A, Crijns H, Dahlöf B, Folliguet T, Glikson M, Goethals M, Gulba DC, Ho SY, Klautz RJM, Kose S, McMurray J, Filardi PP, Raatikainen P, Salvador MJ, Schalij MJ, Shpektor A, Sousa J, Stepinska J, Uuetoa H, Zamorano JL, Zupan I (2010) Guidelines for the management of atrial fibrillation. Eur Heart J 31(19):2369–2429.  https://doi.org/10.1093/eurheartj/ehq278
  10. 10.
    Electrophysiology TFotESoCtNASoP (1996) Heart Rate Variability. Circulation 93(5):1043–1065.  https://doi.org/10.1161/01.CIR.93.5.1043 CrossRefGoogle Scholar
  11. 11.
    Everett TH, Moorman JR, Kok LC, Akar JG, Haines DE (2001) Assessment of global atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation 103(23):2857–2861.  https://doi.org/10.1161/01.CIR.103.23.2857 CrossRefGoogle Scholar
  12. 12.
    Fallet S, Lemay M, Renevey P, Leupi C, Pruvot E, Vesin JM (2016) An adaptive organization index to characterize atrial fibrillation using wrist-type photoplethysmographic signals. In: 2016 Computing in CardiologyGoogle Scholar
  13. 13.
    Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395.  https://doi.org/10.1145/358669.358692 CrossRefGoogle Scholar
  14. 14.
    Gil E, Laguna P, Martinez J, Barquero-Perez O, Garcia-Alberola A, Sornmo L (2013) Heart rate turbulence analysis based on photoplethysmography. IEEE Trans Biomed Eng 60(11):3149–3155.  https://doi.org/10.1109/TBME.2013.2270083 CrossRefGoogle Scholar
  15. 15.
    Goncharova II, Barlow JS (1990) Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking. Electroencephalogr Clin Neurophysiol 76(3):197–204CrossRefGoogle Scholar
  16. 16.
    Krivoshei L, Weber S, Burkard T, Maseli A, Brasier N, Kühne M, Conen D, Huebner T, Seeck A, Eckstein J (2016) Smart detection of atrial fibrillation. Europace p euw125.  https://doi.org/10.1093/europace/euw125
  17. 17.
    Lemay M, Fallet S, Renevey P, Leupi C, Pruvot E, Vesin JM (2016) Wrist-located optical device for atrial fibrillation screening: A clinical study on twenty patients. In: 2016 Computing in CardiologyGoogle Scholar
  18. 18.
    McManus DD, Lee J, Maitas O, Esa N, Pidikiti R, Carlucci A, Harrington J, Mick E, Chon KH (2013) A novel application for the detection of an irregular pulse using an iPhone 4s in patients with atrial fibrillation. Heart Rhythm 10(3):315–319.  https://doi.org/10.1016/j.hrthm.2012.12.001 CrossRefGoogle Scholar
  19. 19.
    Naraharisetti K, Bawa M, Tahernezhadi M (2011) Comparison of different signal processing methods for reducing artifacts from photoplethysmograph signal. In: 2011 IEEE International Conference on Electro/Information Technology (EIT), pp 1–8.  https://doi.org/10.1109/EIT.2011.5978571
  20. 20.
    Podd SJ, Sugihara C, Furniss SS, Sulke N (2016) Are implantable cardiac monitors the ‘gold standard’ for atrial fibrillation detection? A prospective randomized trial comparing atrial fibrillation monitoring using implantable cardiac monitors and DDDRP permanent pacemakers in post atrial fibrillation ablation patients. Europace 18 (7):1000–1005.  https://doi.org/10.1093/europace/euv367 CrossRefGoogle Scholar
  21. 21.
    Rezek IA, Roberts SJ (1998) Stochastic complexity measures for physiological signal analysis. IEEE Trans Biomed Eng 45(9):1186–1191.  https://doi.org/10.1109/10.709563 CrossRefGoogle Scholar
  22. 22.
    Sornmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications. Academic Press, CambridgeGoogle Scholar
  23. 23.
    Van Zaen J, Uldry L, Duchêne C, Prudat Y, Meuli RA, Murray MM, Vesin JM (2010) Adaptive tracking of EEG oscillations. J Neurosci Methods 186(1):97–106.  https://doi.org/10.1016/j.jneumeth.2009.10.018 CrossRefGoogle Scholar
  24. 24.
    Zanin M, Zunino L, Rosso OA, Papo D (2012) Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14:1553–1577.  https://doi.org/10.1016/10.3390/e14081553 CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  • Sibylle Fallet
    • 1
  • Mathieu Lemay
    • 2
  • Philippe Renevey
    • 2
  • Célestin Leupi
    • 3
  • Etienne Pruvot
    • 3
  • Jean-Marc Vesin
    • 1
  1. 1.Swiss Federal Institute of TechnologyLausanneSwitzerland
  2. 2.Swiss Center for Electronics and Microtechnology (CSEM)NeuchâtelSwitzerland
  3. 3.Arrhythmia Unit, Heart and Vascular DepartmentLausanne University HospitalLausanneSwitzerland

Personalised recommendations