Advertisement

A Random Forest classifier-based approach in the detection of abnormalities in the retina

  • Amrita Roy Chowdhury
  • Tamojit Chatterjee
  • Sreeparna Banerjee
Original Article

Abstract

Classification of abnormalities from medical images using computer-based approaches is of growing interest in medical imaging. Timely detection of abnormalities due to diabetic retinopathy and age-related macular degeneration is required in order to prevent the prognosis of the disease. Computer-aided systems using machine learning are becoming interesting to ophthalmologists and researchers. We present here one such technique, the Random Forest classifier, to aid medical practitioners in accurate diagnosis of the diseases. A computer-aided diagnosis system is proposed for detecting retina abnormalities, which combines K means-based segmentation of the retina image, after due preprocessing, followed by machine learning techniques, using several low level and statistical features. Abnormalities in the retina that are classified are caused by age-related macular degeneration and diabetic retinopathy. Performance measures used in the analysis are accuracy, sensitivity, specificity, F-measure, and Mathew correlation coefficient. A comparison with another machine learning technique, the Naïve Bayes classifier shows that the classification achieved by Random Forest classifier is 93.58% and it outperforms Naïve Bayes classifier which yields an accuracy of 83.63%.

Graphical abstract

Random Forest classifier for abnormality detection in retina images.

Keywords

Random Forest classifier Naïve Bayes classifier Diabetic retinopathy images Age-related macular degeneration, K-means clustering 

Notes

Acknowledgements

The authors wish to acknowledge medical experts for fruitful consultations during the course of this work.

Funding information

The authors received support for this research from a grant from Department of Biotechnology, Government of India (No.BT/PR4256/BID/7/393/2012 dated 02.08.2012).

References

  1. 1.
    American Academy of Ophthalmology. Diabetic Retinopathy, Preferred Practice Pattern. San Francisco: American Academy of Ophthalmology, 2008. Available at: http://www.aao.org/ppp
  2. 2.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology 98(5):786–806CrossRefGoogle Scholar
  3. 3.
    Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang Z, Srivastava R, Liu H, Chen X, Duan L, Kee Wong DW, Kwoh CK, Wong TY, Liu J (2014) A survey on computer aided diagnosis for ocular diseases. BMC Medical Informatics Decision Making 14(1):80.  https://doi.org/10.1186/1472-6947-14-80 CrossRefPubMedGoogle Scholar
  5. 5.
    Anitha J, Hemanth DJ (2013) An efficient Kohonen-Fuzzy neural network based abnormal retinal image classification system. Neural Network World 2:149–167CrossRefGoogle Scholar
  6. 6.
    Abbadi NKE, Saadi EHA, Automatic detection of exudates in retinal images, IJCSI International Journal of Computer Science Issues 2013, Vol. 10, Issue 2, No 1, pp: 237–242Google Scholar
  7. 7.
    Akila T, Kavitha G, Detection and classification of hard exudates in human retinal fundus images using Clustering and Random Forest methods, International Journal of Emerging Technology and Advanced Engineering 2014, Vol. 4, Special Issue 2, pp. 24–29Google Scholar
  8. 8.
    Jayakumari C, Santhanam T (2007) Detection of hard exudates for diabetic retinopathy using contextual clustering and fuzzy ART neural network. Asian J Information Technol 6(8):842–846Google Scholar
  9. 9.
    Osareh A, Mirmehdi M, Thomas B, Markham R (2003) Automated identification of diabetic retinal exudates in digital colour images. Br J Ophthalmol 87(10):1220–1223CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727CrossRefPubMedGoogle Scholar
  11. 11.
    R. Scherer, Multiple fuzzy classification schemes studies in fuzziness and soft computing (springer), 228 (2012)Google Scholar
  12. 12.
    Jayanthi D, Devi N, SwarnaParvathi S (2010) Automatic diagnosis of retinal diseases from color retinal images. Int J Computer Sci Information Security 7(1):234–238Google Scholar
  13. 13.
    Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171CrossRefGoogle Scholar
  14. 14.
    Niemeijer M, Ginneken BV, Russell SR, Suttorp-Schulten MS, Abramoff MD (2007) Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investig Ophthalmol Vis Sci 48(5):2260–2267CrossRefGoogle Scholar
  15. 15.
    Niemeijer M, Ginneken BV, Staal J, Suttorp-Schulten MS, Abramoff MD (2005) Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Medical Imaging 24(5):584–592CrossRefPubMedGoogle Scholar
  16. 16.
    Spencer T, Olson JA, McHardy KC, Sharp PF, Forrester JV (1996) An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res 29(4):284–302CrossRefPubMedGoogle Scholar
  17. 17.
    Frame AJ, Undrill PE, Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JV (1998) A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput Biol Med 28(3):225–238CrossRefPubMedGoogle Scholar
  18. 18.
    Staal J, Abramoff MD, Niemeijer M, Viergever MA, Ginneken BV (2004) Ridge- based vessel segmentation in color images of the retina. IEEE Transaction Medical Imaging 23(4):501–509CrossRefGoogle Scholar
  19. 19.
    Niemeijer M, Abramoff MD, Ginneken BV (2009) Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Transaction Medical Imaging 28(5):775–785CrossRefGoogle Scholar
  20. 20.
    Rocha A, Carvalho T, Jelinek HF, Goldenstein S, Wainer J (2012) Points of interest and visual dictionaries for automatic retinal lesion detection. IEEE Trans Biomed Eng 59(8):2244–2253CrossRefPubMedGoogle Scholar
  21. 21.
    Roychowdhury S, Dara DK, Parhi KK (2014) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomedical Health Informatics 18(5):1717–1728CrossRefGoogle Scholar
  22. 22.
    Agurto C, Barriga ES, Murray V, Nemeth S, Crammer R, Bauman W, Zamora G, Pattichis MS, Soliz P (2011) Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Invest Ophthalmol Vis Sci 52(8):5862–5871CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I, Machine learning and data mining methods in Diabetes Research, Computational and Structural Biotechnology Journal 2017, Elsevier, Vol 15, pp. 104–116Google Scholar
  24. 24.
    Saiprasad G, Chang C, Safdar N, Saenz N, Seigel E (2013) Adrenal gland abnormality detection using Random Forest classification. J Digit Imaging 26(5):891–897CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    A. Lang, A. Carass, E. Sotirchos, P. Calabresi, J.L. Prince, Segmentation of retinal OCT images using a random forest classifier, Proceedings of SPIE-the International Society for Optical Engineering 2013, 8869: 1667494, available on: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660978/
  26. 26.
    Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LWB, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40(2):124–137CrossRefPubMedGoogle Scholar
  27. 27.
    Saha R, RoyChowdhury A, Banerjee S. Diabetic retinopathy related lesions detection and classification using machine learning technology. Springer International Publishing Switzerland, Artificial Intelligence and Soft Computing (ICAISC), 2016, Vol. 9693, pp. 734–745Google Scholar
  28. 28.
    Decencière et al.,Feedback on a publicly distributed database: the Messidor database. Image Analysis & Stereology, vol. 33, no. 3, p. 231–234, aug. 2014, ISSN 1854–5165, Available at: http://www.ias-iss.org/ojs/IAS/article/view/1155 or  https://doi.org/10.5566/ias.1155
  29. 29.
    Decencière E, et al. TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM (2013),  https://doi.org/10.1016/j.irbm.2013.01.010, TeleOphta: Machine learning and image processing methods for teleophthalmology
  30. 30.
    Kauppi T, Kalesnykiene V, et al. DIARETDB0-standard diabetic retinopathy database, calibration level 0. IMAGERET project 2007,http://www.it.lut.fi/project/imageret/diaretdb0
  31. 31.
    Kauppi T, Kalesnykiene V, et al. DIARETDB1-standard diabetic retinopathy database, calibration level 1. IMAGERET projects 2007, http://www.it.lut.fi/project/imageret/diaretdb1
  32. 32.
  33. 33.
    RoyChowdhury A, Banerjee S, Segmentation of retina images to detect abnormalities arising from diabetic retinopathy. [preprint]Google Scholar
  34. 34.
    Liu D, Yu J, Otsu method and K-means, Ninth International Conference on Hybrid Intelligent Systems 2009, IEEE Computer Society, Vol. 1, pp. 344–349Google Scholar
  35. 35.
    Roychowdhury A, Banerjee S, Random Forests in the classification of diabetic retinopathy retinal images, Advanced Computational and Communication Paradigms, Proceedings of International Conference on Advanced Computational and Communication Paradigms (ICACCP-2017), Vol. 1, pp. 168–176Google Scholar
  36. 36.
    Breiman L (2001) Random Forests, machine learning. Springer 45(1):5–32Google Scholar
  37. 37.
    Witten I, Frank E, Hall M. Data mining: practical machine learning tools and techniques.3rd Edition, Morgan Kaufmann, 2011Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  • Amrita Roy Chowdhury
    • 1
  • Tamojit Chatterjee
    • 2
  • Sreeparna Banerjee
    • 3
  1. 1.Computer Science and Engineering DepartmentMaulana Abul Kalam Azad University of TechnologyKolkataIndia
  2. 2.Regional Institute of OphthalmologyCalcutta Medical CollegeKolkataIndia
  3. 3.Department of Natural Science and IEMMaulana Abul Kalam Azad University of TechnologyKolkataIndia

Personalised recommendations