Medical & Biological Engineering & Computing

, Volume 57, Issue 1, pp 135–146 | Cite as

Fractal dimension based carotid plaque characterization from three-dimensional ultrasound images

  • Ran Zhou
  • Yongkang Luo
  • Aaron Fenster
  • John David Spence
  • Mingyue DingEmail author
Original Article


Irregularity of the plaque surface associated with previous plaque rupture plays an important role in the risk estimation of stroke caused by carotid atherosclerotic lesions. Thus, the aim of this study is to develop and validate novel vulnerability biomarkers from three-dimensional ultrasound (3DUS) images by analyzing the surface morphological characteristics of carotid plaque using fractal geometry features. In the experiments, a total of 38 3DUS plaque images were obtained from two groups of patients treated with 80 mg of atorvastatin or placebo daily for 3 months respectively. Two types of 3D fractal dimensions (FDs) were used to describe the smoothness of plaque surface morphology and the roughness from intensity of 3DUS images. Student’s t test showed that the two fractal features were effective for detecting the statin-related changes in carotid atherosclerosis with p < 0.00023 and p < 0.0113 respectively. It was concluded that the 3D FD measurements were effective for analyzing carotid plaque characteristics and especially effective for evaluating the impact of atorvastatin treatment.

Graphical abstract


Fractal dimension Carotid plaque characterization Three-dimensional ultrasound Vulnerable plaque 


Funding information

This work was financially supported by the National Nature Science Foundation of China (No. 81571754) and partly supported by the Special Research Fund for the Doctoral Program of Higher Education (No. 20130142130006) and the Innovation Research Foundation of Huazhong University of Science and Technology (No. 2013ZZGH018).

Compliance with ethical standards

Patients provided written informed consent to a study protocol approved by the University of Western Ontario Standing Board of Human Research Ethics.


  1. 1.
    A VDS (2003) Advanced support vector machines and kernel methods. Neurocomputing 55:5–20CrossRefGoogle Scholar
  2. 2.
    Acharya UR, Subbhuraam VS, Rama M, Molinari F, Saba L, Ho SYS, Ahuja AT, Ho SC, Nicolaides A, Suri J (2012) Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med Biol 38:899–915CrossRefGoogle Scholar
  3. 3.
    Ainsworth CD, Blake CC, Tamayo A, Beletsky V, Fenster A, Spence JD (2005) 3D ultrasound measurement of change in carotid plaque volume. Stroke 36:1904–1909CrossRefGoogle Scholar
  4. 4.
    Asvestas P, Golemati S, Matsopoulos G, Nikita K, Nicolaides A (2002) Fractal dimension estimation of carotid atherosclerotic plaques from B-mode ultrasound: a pilot study. Ultrasound Med Biol 28:1129–1136CrossRefGoogle Scholar
  5. 5.
    Awad J, Krasinski A, Parraga G, Fenster A (2010) Texture analysis of carotid artery atherosclerosis from three-dimensional ultrasound images. Med Phys 37:1382–1391CrossRefGoogle Scholar
  6. 6.
    Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, Muntendam P, Garcia MJ, Gregson J, Pocock S, Falk E, Fuster V (2015) Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol 65:1065–1074CrossRefGoogle Scholar
  7. 7.
    Backes AR, Eler DM, Minghim R, Bruno OM (2010) Characterizing 3D shapes using fractal dimension. In: Proceedings of the 15th Iberoamerican congress conference on Progress in pattern recognition, image analysis, computer vision, and applications, BrazilGoogle Scholar
  8. 8.
    Cardiovascular diseases (2012) World Health Organization.
  9. 9.
    Cheng J, Li H, Xiao F, Fenster A, Ding M (2013) Fully automatic plaque segmentation in 3-D carotid ultrasound images. Ultrasound Med Biol 39:3431–3445CrossRefGoogle Scholar
  10. 10.
    Chiu B, Egger M, Parraga G, Fenster A, Spence JD (2006) Quantification of carotid vessel atherosclerosis. In: The processing of the International Society for Optical EngineeringGoogle Scholar
  11. 11.
    Chiu B, Egger M, Spence JD, Parraga G, Fenster A (2006) Quantification of progression and regression of carotid vessel atherosclerosis using 3D ultrasound images. In: the processing of the 28th International Conference on the IEEE Engineering in Medicine and Biology SocietyGoogle Scholar
  12. 12.
    Chiu B, Egger M, Spence J, Parraga G, Fenster A (2008) Area-preserving flattening maps of 3D ultrasound carotid arteries images. Med Image Anal 12:676–688CrossRefGoogle Scholar
  13. 13.
    Chiu B, Egger M, Spence J, Parraga G, Fenster A (2008) Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images. Med Phys 35:3691–3710CrossRefGoogle Scholar
  14. 14.
    Chiu B, Beletsky V, Spence J, Parraga G, Fenster A (2009) Analysis of carotid lumen surface morphology using three-dimensional ultrasound imaging. Phys Med Biol 54:1149–1167CrossRefGoogle Scholar
  15. 15.
    Egger M, Spence J, Fenster A, Parraga G (2007) Validation of 3D ultrasound vessel wall volume: an imaging phenotype of carotid atherosclerosis. Ultrasound Med Biol 33:905–914CrossRefGoogle Scholar
  16. 16.
    Elatrozy T, Nicolaides A, Tegos T, Griffin M (1998) The objective characterisation of ultrasonic carotid plaque features. Eur J Vasc Endovasc Surg 16:223–230CrossRefGoogle Scholar
  17. 17.
    El-Barghouty N, Geroulakos G, Nicolaides A, Androulakis A, Bahal V (1995) Computer assisted carotid plaque characterization. Eur J Vasc Endovasc Surg 9:548–557CrossRefGoogle Scholar
  18. 18.
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874CrossRefGoogle Scholar
  19. 19.
    Fenster A, Downey D (2000) 3-D ultrasound imaging. Annu Rev Biomed Eng 2:457–475CrossRefGoogle Scholar
  20. 20.
    G*Power: Statistical power analyses for Windows and Mac.
  21. 21.
    Gagnepain JJ, Roques-Carmes C (1986) Fractal approach to two dimensional and three dimensional surface roughness. Wear 109:119–126CrossRefGoogle Scholar
  22. 22.
    Hanley J, Mcneil B (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefGoogle Scholar
  23. 23.
    Homburg PJ, Rozie S, van Gils MJ, van den Bouwhuijsen QJ, Niessen WJ, Dippel DWJ, van der Lugt A (2011) Association between carotid artery plaque ulceration and plaque composition evaluated with multidetector CT angiography. Stroke 42:367–372CrossRefGoogle Scholar
  24. 24.
    Johnsen SH, Mathiesen EB, Joakimsen O, Stensland E, Wilsgaard T, Lochen M-L, Njolstad I, Arnesen E (2007) Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromso Study. Stroke 38:2873–2880CrossRefGoogle Scholar
  25. 25.
    Kuk M, Wannarong T, Beletsky V, Parraga G, Fenster A, Spence J (2014) Volume of carotid artery ulceration as a predictor of cardiovascular events. Stroke 5:1437–1441CrossRefGoogle Scholar
  26. 26.
    Landry A, Fenster A (2002) Theoretical and experimental quantification of carotid plaque volume measurements made by three-dimensional ultrasound using test phantoms. Med Phys 29Google Scholar
  27. 27.
    Landry A, Spence JD, Fenster A (2004) Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke 35:864–869CrossRefGoogle Scholar
  28. 28.
    Landry A, Spence JD, Fenster A (2005) Quantification of carotid plaque volume measurements using 3D ultrasound imaging. Ultrasound Med Biol 31:751–762CrossRefGoogle Scholar
  29. 29.
    Lechareas S, Yanni A, Golemati S, Chatziioannou A, Perrea DN (2016) Ultrasound and biochemical diagnostic tools for the characterization of vulnerable carotid atherosclerotic plaque. Ultrasound Med Biol 42:31–43CrossRefGoogle Scholar
  30. 30.
    Li J-S, Tang Y, Li Z, Li Z (2017) Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model. Appl Surf Sci 410:60–69CrossRefGoogle Scholar
  31. 31.
    Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13:634–649CrossRefGoogle Scholar
  32. 32.
    Madani A, Beletsky V, Tamayo A, Munoz C, Spence J (2011) High-risk asymptomatic carotid stenosis: ulceration on 3D ultrasound vs TCD microemboli. Neurology 77:744–750CrossRefGoogle Scholar
  33. 33.
    Mandelbrot B (1982) The fractal geometry of nature. W. H. Freeman and Company, San FranciscoGoogle Scholar
  34. 34.
    Militký J, Bajzík V (2001) Surface roughness and fractal dimension. J Text Inst 92:91–113CrossRefGoogle Scholar
  35. 35.
    Naqvi TZ (2015) Quantifying atherosclerosis by 3D ultrasound works!: but there is work to be done. J Am Coll Cardiol 65:1075–1077CrossRefGoogle Scholar
  36. 36.
    Niu L, Qian M, Yang W, Meng L, Xiao Y, Wong K, Abbott D, Liu X, Zheng H (2013) Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis. PLoS One 8:e76880–e76880CrossRefGoogle Scholar
  37. 37.
    Paterni EPM (2015) Ultrasound tissue characterization of vulnerable atherosclerotic plaque. Int J Mol Sci 16:10121–10133CrossRefGoogle Scholar
  38. 38.
    Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Anal Mach Intell 6:518–523CrossRefGoogle Scholar
  39. 39.
    Rothwell P, Gibson R, Warlow C (2000) Interrelation between plaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. Stroke 31:615–621CrossRefGoogle Scholar
  40. 40.
    Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T (2002) Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke 33:2916–2922CrossRefGoogle Scholar
  41. 41.
    Tsakiris AG, Papanicolaou T (2008) A fractal approach for characterizing microroughness in gravel streams. Arch Hydro Eng Environ Mech 55:29–43Google Scholar
  42. 42.
    Tsiaparas N, Golemati S, Andreadis I, Stoitsis J, Valavanis I, Nikita K (2011) Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-mode ultrasound. IEEE Trans Inf Technol Biomed 15:130–137CrossRefGoogle Scholar
  43. 43.
    U-King-Im J, Young V, Gillard J (2009) Carotid-artery imaging in the diagnosis and management of patients at risk of stroke. Lancet Neurol 8:569–580CrossRefGoogle Scholar
  44. 44.
    van Engelen A, Wannarong T, Parraga G, Niessen WJ, Fenste A, Spence JD, de Bruijne M (2014) Three-dimensional carotid ultrasound plaque texture predicts vascular events. Stroke 45:2695–2701CrossRefGoogle Scholar
  45. 45.
    van Wesemael B, Poesen J, de Figueiredo T, Govers G (2015) Surface roughness evolution of soils containing rock fragments. Earth Surf Process Landf 21:399–411CrossRefGoogle Scholar
  46. 46.
    Wannarong T, Parraga G, Buchanan D, Fenster A, House AA, Hackam DG, Spence JD (2013) Progression of carotid plaque volume predicts cardiovascular events. Stroke 44:1859–1865CrossRefGoogle Scholar
  47. 47.
    Xie W, Wu Y, Wang W, Zhao D, Liang L, Wang M, Yang Y, Sun J, Shi P, Huo Y (2011) A longitudinal study of carotid plaque and risk of ischemic cardiovascular disease in the Chinese population. J Am Soc Echocardiogr 24:729–737CrossRefGoogle Scholar
  48. 48.
    Yongkang L, Mingyue D (2016) Atorvastatin effect evaluation based on feature combination of three dimension ultrasound images. In: SPIE Medical Imaging, San Diego, California, United StatesGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  • Ran Zhou
    • 1
    • 2
  • Yongkang Luo
    • 1
    • 2
  • Aaron Fenster
    • 3
  • John David Spence
    • 3
    • 4
  • Mingyue Ding
    • 1
    • 2
    Email author
  1. 1.Medical Ultrasound Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Molecular Biophysics of Education Ministry of ChinaHuazhong University of Science and TechnologyWuhanChina
  3. 3.Imaging Research Laboratories, Robarts Research InstituteWestern UniversityLondonCanada
  4. 4.Stroke Prevention and Atherosclerosis Research Centre, Robarts Research InstituteWestern UniversityLondonCanada

Personalised recommendations