Medical & Biological Engineering & Computing

, Volume 50, Issue 2, pp 155–163 | Cite as

Estimating the time scale and anatomical location of atrial fibrillation spontaneous termination in a biophysical model

  • Laurent UldryEmail author
  • Vincent Jacquemet
  • Nathalie Virag
  • Lukas Kappenberger
  • Jean-Marc Vesin
Original Article


Due to their transient nature, spontaneous terminations of atrial fibrillation (AF) are difficult to investigate. Apparently, confounding experimental findings about the time scale of this phenomenon have been reported, with values ranging from 1 s to 1 min. We propose a biophysical modeling approach to study the mechanisms of spontaneous termination in two models of AF with different levels of dynamical complexity. 8 s preceding spontaneous terminations were studied and the evolution of cycle length and wavefront propagation were documented to assess the time scale and anatomical location of the phenomenon. Results suggest that termination mechanisms are dependent on the underlying complexity of AF. During simulated AF of low complexity, the total process of spontaneous termination lasted 3,200 ms and was triggered in the left atrium 800 ms earlier than in the right atrium. The last fibrillatory activity was observed more often in the right atrium. These asymmetric termination mechanisms in both time and space were not observed during spontaneous terminations of complex AF simulations, which showed less predictable termination patterns lasting only 1,600 ms. This study contributes to the interpretation of previous clinical observations, and illustrates how computer modeling provides a complementary approach to study the mechanisms of cardiac arrhythmias.


Atrial fibrillation Spontaneous termination Biophysical modeling 



This work was supported by grants from the Theo-Rossi-Di-Montelera Foundation, the Swiss Governmental Commission of Innovative Technologies (CTI), Medtronic Europe, the Natural Sciences and Engineering Research Council of Canada, and the Heart and Stroke Foundation of Québec.

Supplementary material

Supplementary material 1 (MPG 3198 kb)

Supplementary material 2 (MPG 3174 kb)


  1. 1.
    Agladze K, Kay MW, Krinsky V, Sarvazyan N (2006) Interaction between spiral and paced waves in cardiac tissue. Am J Physiol Heart Circ Physiol 293(1):H503–H513CrossRefGoogle Scholar
  2. 2.
    Alcaraz R, Rieta JJ, Hornero F (2008) Non-invasive characterization of atrial activity immediately prior to termination of paroxysmal atrial fibrillation. Rev Esp Cardiol 61(2):154–160PubMedCrossRefGoogle Scholar
  3. 3.
    Camm AJ, Kirchhof P, Lip GYH, Schotten U, Savelieva I, Ernst S, Gelder ICV, Al-Attar N, Hindricks G, Prendergast B, Heidbuchel H, Alfieri O, Angelini A, Atar D, Colonna P, Caterina RD, Sutter JD, Goette A, Gorenek B, Heldal M, Hohloser SH, Kolh P, Heuzey JYL, Ponikowski P, Rutten FH (2010) Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Eur Heart J 31(19):2369–2429PubMedCrossRefGoogle Scholar
  4. 4.
    Courtemanche M, Ramirez R, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275(1):H301–H321PubMedGoogle Scholar
  5. 5.
    Fujiki A, Sakabe M, Nishida K, Mizumaki K, Inoue H (2003) Role of fibrillation cycle length in spontaneous and drug-induced termination of human atrial fibrillation. Circ J 67(5):391–395PubMedCrossRefGoogle Scholar
  6. 6.
    Harrild D, Henriquez C (2000) A computer model of normal conduction in the human atria. Circ Res 87:e25–e36PubMedCrossRefGoogle Scholar
  7. 7.
    Jacquemet V, Virag N, Ihara Z, Dang L, Blanc O, Zozor S, Vesin JM, Kappenberger L, Henriquez C (2003) Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J Cardiovasc Electrophysiol 14:S172–S179PubMedCrossRefGoogle Scholar
  8. 8.
    Jacquemet V, Virag N, Kappenberger L (2005) Wavelength and vulnerability to atrial fibrillation: insights from a computer model of human atria. Europace 7:S83–S92CrossRefGoogle Scholar
  9. 9.
    Kim BS, Kim YH, Hwang GS, Pak HN, Lee SC, Shim WJ, Oh DJ, Ru YM (2002) Action potential duration restitution kinetics in human atrial fibrillation. J Am Coll Cardiol 39:1329–1336PubMedCrossRefGoogle Scholar
  10. 10.
    Kneller J, Kalifa J, Zou R, Zaitsev AV, Warren M, Berenfeld O, Vigmond EJ, Leon LJ, Nattel S, Jalife J (2005) Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model. Circ Res 96(5):e35–e47PubMedCrossRefGoogle Scholar
  11. 11.
    Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC, Allessie MA (1994) High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89(4):1665–1680PubMedGoogle Scholar
  12. 12.
    Lines GT, MacLachlan MC, Linge S, Tveito A (2009) Synchronizing computer simulations with measurement data for a case of atrial flutter. Ann Biomed Eng 37:1287–1293PubMedCrossRefGoogle Scholar
  13. 13.
    Luo CH, Rudy Y (1991) A model of ventricular cardiac action potential. Circ Res 68:1501–1526PubMedGoogle Scholar
  14. 14.
    Moe GK (1962) On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn Ther 140:183–188Google Scholar
  15. 15.
    Ndrepepa G, Weber S, Karch MR, Schneider MAE, Schömig A, Schmitt C (2002) Electrophysiologic characteristics of the spontaneous onset and termination of atrial fibrillation. Am J Cardiol 90:1215–1220PubMedCrossRefGoogle Scholar
  16. 16.
    Petrutiu S, Sahakian AV, Swiryn S (2007) Abrupt changes in fibrillatory waves characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9(7):466–470PubMedCrossRefGoogle Scholar
  17. 17.
    Reumann M, Bohnert J, Seeman G, Osswals B, Dössel O (2008) Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans Biomed Eng 55:399–406PubMedCrossRefGoogle Scholar
  18. 18.
    Ruchat P, Dang L, Virag N, von Segesser LK, Kappenberger L (2007) Use of a biophysical model of atrial fibrillation in the interpretation of the outcomes of surgical ablation procedures. Eur J Cardiothorac Surg 32:90–95PubMedCrossRefGoogle Scholar
  19. 19.
    Shao H, Sampson KJ, Pormann JB, Rose DJ, Henriquez CS (2004) A resistor interpretation of general anisotropic cardiac tissue. Math Biosci 187:155–174PubMedCrossRefGoogle Scholar
  20. 20.
    Sih HJ, Ropella KM, Swiryn S, Gerstenfeld EP, Sahakian AV (1994) Observations from intraatrial recordings on the termination of electrically induced atrial fibrillation in humans. Pacing Clin Electrophysiol 17:1231–1242PubMedCrossRefGoogle Scholar
  21. 21.
    Sih HJ, Zipes DP, Berbari EJ, Adams E, Olgin JE (2000) Differences in organization between acute and chronic atrial fibrillation in dogs. J Am Coll Cardiol 36(3):924–931PubMedCrossRefGoogle Scholar
  22. 22.
    Spector PS, Habel N, Sobel BE, Bates JHT (2011) Emergence of complex behavior: an interactive model of cardiac excitation provides a powerful tool for understanding electrical propagation. Circ Arrhythm Electrophysiol 4(4):586–591PubMedCrossRefGoogle Scholar
  23. 23.
    Uldry L, Virag N, Vesin JM, Kappenberger L (2010) Optimizing local capture of atrial fibrillation: a model based study of the influence of tissue dynamics on the outcome of rapid pacing. Ann Biomed Eng 38(12):3664–3673PubMedCrossRefGoogle Scholar
  24. 24.
    Vaisrub S (1950) Spontaneous reversion to normal sinus rhythm in a case of auricular fibrillation of long standing. Can Med Assoc J 63:599–600PubMedGoogle Scholar
  25. 25.
    Vigmond EJ, Tsoi V, Kuo S, Arvalo H, Kneller J, Nattel S, Trayanova N (2004) The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm 1:334–344PubMedCrossRefGoogle Scholar
  26. 26.
    Virag N, Jacquemet V, Henriquez CS, Zozor S, Blanc O, Vesin JM, Pruvot E, Kappenberger L (2002) Study of arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12:754–763PubMedCrossRefGoogle Scholar
  27. 27.
    Zozor S, Blanc O, Jacquemet V, Virag N, Vesin JM, Pruvot E, Kappenberger L, Henriquez CS (2003) A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans Biomed Eng 50:412–420PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • Laurent Uldry
    • 1
    Email author
  • Vincent Jacquemet
    • 2
    • 3
  • Nathalie Virag
    • 4
  • Lukas Kappenberger
    • 5
  • Jean-Marc Vesin
    • 1
  1. 1.Applied Signal Processing Group, Swiss Federal Institute of Technology, EPFL-STI-SCI-JMV, Bâtiment ELDLausanneSwitzerland
  2. 2.Department of PhysiologyUniversité de MontréalMontréalCanada
  3. 3.Centre de Recherche, Hôpital du Sacré-Coeur de MontréalMontréalCanada
  4. 4.Medtronic EuropeTolochenazSwitzerland
  5. 5.University of LausanneLausanneSwitzerland

Personalised recommendations