Advertisement

Frontiers in Biology

, Volume 13, Issue 4, pp 277–286 | Cite as

Metastatic tumor cells – genotypes and phenotypes

  • Dingcheng Gao
  • Vivek Mittal
  • Yi Ban
  • Ana Rita Lourenco
  • Shira Yomtoubian
  • Sharrell Lee
Review
  • 6 Downloads

Abstract

Background

Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research.

Objective

To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells.

Method and Result

In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade.

Conclusion

In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.

Keywords

metastasis epithelial to mesenchymal transition (EMT) cancer stem cell circulating tumor cells cellular plasticity phenotype dynamics Background 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto N, Bardia A, Miyamoto D T, Donaldson M C, Wittner B S, Spencer J A, Yu M, Pely A, Engstrom A, Zhu H(2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158:1110–1122CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100:3983–3988CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boral D, Vishnoi M, Liu H N, Yin W, Sprouse M L, Scamardo A, Hong D S, Tan T Z, Thiery J P, Chang J C (2017). Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun, 8:196CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bos PD, Zhang X H F, Nadal C, Shu W, Gomis R R, Nguyen D X, Minn A J, Van de Vijver M, Gerald W, Foekens J A, Massagué J (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459:1005–1009CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brabletz T 2012. To differentiate or not–routes towards metastasis. In: Nat Rev Cancer. England. p. 425–436.Google Scholar
  6. Brastianos P K, Carter S L, Santagata S, Cahill D P, Taylor-Weiner A, Jones R T, Van Allen E M, Lawrence M S, Horowitz P M, Cibulskis K (2015). Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov, 5:1164–1177CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cabrera M C, Hollingsworth R E, Hurt E M (2015). Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells, 7:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  8. Campbell P J, Yachida S, Mudie L J, Stephens P J, Pleasance E D, Stebbings L A, Morsberger L A, Latimer C, McLaren S, Lin M L (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467:1109–1113CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carmody L, Germain A, Morgan B, VerPlank L, Fernandez C, Forbeck E, Ting A, Feng Y, Perez J, Dandapani S (2010). Identification of a Selective Small-Molecule Inhibitor of Breast Cancer Stem Cells- Probe 1. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US).Google Scholar
  10. Chaffer C L, Marjanovic N D, Lee T, Bell G, Kleer C G, Reinhardt F, D’Alessio A C, Young R A, Weinberg R A (2013). Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 154:61–74CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, Deng P, Yu B, Yu Y, Dong J (2017). Targeting BMI1(+) Cancer Stem Cells Overcomes Chemoresistance and Inhibits Metastases in Squamous Cell Carcinoma. Cell Stem Cell, 20:621–634CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chiou SH, Risca VI, Wang GX, Yang D, Gruner B M, Kathiria A S, Ma R K, Vaka D, Chu P, Kozak M (2017). BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer. Cancer Discov, 7:1184–1199CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chuang C H, Greenside P G, Rogers Z N, Brady J J, Yang D, Ma R K, Caswell D R, Chiou S H, Winters A F, Gruner B M (2017). Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med, 23:291–300CrossRefPubMedGoogle Scholar
  14. Chui M H (2013). Insights into cancer metastasis from a clinicopathologic perspective: Epithelial-Mesenchymal Transition is not a necessary step. Int J Cancer, 132:1487–1495CrossRefPubMedGoogle Scholar
  15. Davis F M, Stewart T A, Thompson E W, Monteith G R (2014). Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci, 35: 479–488CrossRefPubMedGoogle Scholar
  16. de Sousa e Melo F, Kurtova A V, Harnoss J M, Kljavin N, Hoeck J D, Hung J, Anderson J E, Storm E E, Modrusan Z, Koeppen H (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature, 543:676–680CrossRefPubMedGoogle Scholar
  17. Dragu D L, Necula L G, Bleotu C, Diaconu C C, Chivu-Economescu M (2015). Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells, 7:1185–1201PubMedPubMedCentralGoogle Scholar
  18. DuPage M, Dooley A L, Jacks T (2009). Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc, 4(7): 1064–1072CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fischer K R, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. Nov 26;527:472–476. Epub 2015/11/13.Google Scholar
  20. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson A G, Johnson A R, Lichtenberg T M, Murray B A, Ghayee H K, Else T(2017). Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 31:181–193CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fraser M, Sabelnykova V Y, Yamaguchi T N, Heisler L E, Livingstone J, Huang V, Shiah Y J, Yousif F, Lin X, Masella A P(2017). Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 541: 359–364CrossRefPubMedGoogle Scholar
  22. George J T, Jolly M K, Xu S, Somarelli J A, Levine H (2017). Survival Outcomes in Cancer Patients Predicted by a Partial EMT Gene Expression Scoring Metric. Cancer Res, 77: 6415–6428CrossRefPubMedGoogle Scholar
  23. Giannelli G, Villa E, Lahn M(2014). Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma. Cancer Res, 74:1890–1894CrossRefPubMedGoogle Scholar
  24. Goossens N, Hoshida Y, Aguirre-Ghiso J A(2015). Origin and interpretation of cancer transcriptome profiling: the essential role of the stroma in determining prognosis and drug resistance. EMBO Mol Med, 7:1385–1387CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grigore A D, Jolly M K, Jia D, Farach-Carson M C, Levine H (2016). Tumor Budding: The Name is EMT. Partial EMT. J Clin Med, 29:5Google Scholar
  26. Gupta P B, Chaffer C L, Weinberg R A (2009). Cancer stem cells: mirage or reality? Nat Med, 15:1010–1012CrossRefPubMedGoogle Scholar
  27. Gupta P B, Onder T T, Jiang G, Tao K, Kuperwasser C, Weinberg R A, Lander E S (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138:645–659CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hecht I, Natan S, Zaritsky A, Levine H, Tsarfaty I, Ben-Jacob E(2015). The motility-proliferation-metabolism interplay during metastatic invasion. Sci Rep, 5:13538CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hoadley K A, Siegel M B, Kanchi K L, Miller C A, Ding L, Zhao W, He X, Parker J S, Wendl M C, Fulton R S(2016). Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases. PLoS Med, e1002174Google Scholar
  30. Jaggupilli A, Elkord E (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol, 2012: 708036CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kalluri R, Weinberg R A (2009). The basics of epithelial-mesenchymal transition. J Clin Invest, 119:1420–1428CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kang Y, Siegel P M, Shu W, Drobnjak M, Kakonen S M, Cordon-Cardo C, Guise T A, Massague J (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3:537–549CrossRefPubMedGoogle Scholar
  33. Ku S Y, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich Z W, Goodrich M M, Labbe D P, Gomez E C, Wang J, Long H W, Xu B, Brown M, Loda M, Sawyers C L, Ellis L, Goodrich D W(2017). Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 355:78–83CrossRefPubMedPubMedCentralGoogle Scholar
  34. Labib M, Mohamadi R M, Poudineh M, Ahmed S U, Ivanov I, Huang C L, Moosavi M, Sargent E H, Kelley S O (2018). Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat Chem, 10:489–495CrossRefPubMedGoogle Scholar
  35. Lambert A W, Pattabiraman D R, Weinberg R A (2017). Emerging Biological Principles of Metastasis. Cell, 168:670–691CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri M A, Dick J E (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367:645–648CrossRefPubMedGoogle Scholar
  37. Lawson D A, Bhakta N R, Kessenbrock K, Prummel K D, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang C Y, Yaswen P, Goga A, Werb Z (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526:131–135CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lim J, Thiery J P 2012. Epithelial-mesenchymal transitions: insights from development. In: Development. England. p. 3471–3486.Google Scholar
  39. Liu H, Patel M R, Prescher J A, Patsialou A, Qian D, Lin J, Wen S, Chang Y F, Bachmann M H, Shimono Y, Dalerba P, Adorno M, Lobo N, Bueno J, Dirbas F M, Goswami S, Somlo G, Condeelis J, Contag C H, Gambhir S S, Clarke M F (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A, 107:18115–18120CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu Y, Cao X (2016). Characteristics and Significance of the Premetastatic Niche. Cancer Cell, 30:668–681CrossRefPubMedGoogle Scholar
  41. Luzzi K J, MacDonald I C, Schmidt E E, Kerkvliet N, Morris V L, Chambers A F, Groom A C (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 153:865–873CrossRefPubMedPubMedCentralGoogle Scholar
  42. Magnani L, Frige G, Gadaleta R M, Corleone G, Fabris S, Kempe H, Verschure P J, Barozzi I, Vircillo V, Hong S P, Perone Y, Saini M, Trumpp A, Viale G, Neri A, Ali S, Colleoni M A, Pruneri G, Minucci S (2017). Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nat Genet,49:444–450CrossRefPubMedPubMedCentralGoogle Scholar
  43. Makohon-Moore A, Iacobuzio-Donahue C A (2016). Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer, 16:553–565CrossRefPubMedPubMedCentralGoogle Scholar
  44. Makohon-Moore A P, Zhang M, Reiter J G, Bozic I, Allen B, Kundu D, Chatterjee K, Wong F, Jiao Y, Kohutek Z A, Hong J, Attiyeh M, Javier B, Wood L D, Hruban R H, Nowak M A, Papadopoulos N, Kinzler K W, Vogelstein B, Iacobuzio-Donahue C A (2017). Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet, 49:358–366CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mani S A, Guo W, Liao M J, Eaton E N, Ayyanan A, Zhou A Y, Brooks M, Reinhard F, Zhang C C, Shipitsin M, Campbell L L, Polyak K, Brisken C, Yang J, Weinberg R A (2008). The epithelialmesenchymal transition generates cells with properties of stem cells. Cell, 133:704–715CrossRefPubMedPubMedCentralGoogle Scholar
  46. Martinez-Cardus A, Moran S, Musulen E, Moutinho C, Manzano J L, Martinez-Balibrea E, Tierno M, Elez E, Landolfi S, Lorden P, Arribas C, Müller F, Bock C, Tabernero J, Esteller M (2016). Epigenetic homogeneity within colorectal tumors predicts shorter relapse-free and overall survival times for patients with locoregional cancer. Gastroenterology, 151:961–972CrossRefPubMedGoogle Scholar
  47. McCauley H A, Chevrier V, Birnbaum D, Guasch G (2017). Derepression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFbeta-deficient squamous cell carcinoma from transition zones. Elife, 21:6Google Scholar
  48. McDonald O G, Li X, Saunders T, Tryggvadottir R, Mentch S J, Warmoes M O, Word A E, Carrer A, Salz T H, Natsume S, Stauffer K M, Makohon-Moore A, Zhong Y, Wu H, Wellen K E, Locasale J W, Iacobuzio-Donahue C A, Feinberg A P (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet, 49:367–376CrossRefPubMedPubMedCentralGoogle Scholar
  49. Minn A J, Gupta G P, Siegel P M, Bos P D, Shu W, Giri D D, Viale A, Olshen A B, Gerald W L, Massagué J (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436:518–524.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nagare R P, Sneha S, Priya S K, Ganesan T S (2017). Cancer Stem Cells- Are Surface Markers Alone Sufficient? Curr Stem Cell Res Ther, 12(1): 37–44CrossRefPubMedGoogle Scholar
  51. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie W R, Hicks J, Wigler M (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472:90–94CrossRefPubMedPubMedCentralGoogle Scholar
  52. Navin N E (2015). The first five years of single-cell cancer genomics and beyond. Genome Res, 25:1499–1507CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nguyen D X, Massague J (2007). Genetic determinants of cancer metastasis. Nat Rev Genet, 8:341–352CrossRefPubMedGoogle Scholar
  54. Olsen S N, Wronski A, Castano Z, Dake B, Malone C, De Raedt T, Enos M, DeRose Y S, Zhou W, Guerra S, Loda M, Welm A, Partridge A H, McAllister S S, Kuperwasser C, Cichowski K (2017). Loss of RasGAP tumor suppressors underlies the aggressive nature of luminal b breast cancers. Cancer Discov, 7:202–217CrossRefPubMedGoogle Scholar
  55. Patel A P, Tirosh I, Trombetta J J, Shalek A K, Gillespie S M, Wakimoto H, Cahill D P, Nahed B V, Curry W T, Martuza R L, Louis D N, Rozenblatt-Rosen O, Suvà M L, Regev A, Bernstein B E (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344:1396–1401CrossRefPubMedPubMedCentralGoogle Scholar
  56. Patel S A, Vanharanta S (2016). Epigenetic determinants of metastasis. Mol Oncol, 11(1): 79–96CrossRefGoogle Scholar
  57. Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A (2017). Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol, 44(Feb): 10–24CrossRefPubMedGoogle Scholar
  58. Pon J R, Marra M A (2015). Driver and passenger mutations in cancer. Annu Rev Pathol, 10(1): 25–50CrossRefPubMedGoogle Scholar
  59. Poudineh M, Aldridge P M, Ahmed S, Green B J, Kermanshah L, Nguyen V, Tu C, Mohamadi R M, Nam R K, Hansen A (2017). Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat Nanotechnol, 12:274–281CrossRefPubMedGoogle Scholar
  60. Puram S V, Tirosh I, Parikh A S, Patel A P, Yizhak K, Gillespie S, Rodman C, Luo C L, Mroz E A, Emerick K S (2017). Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell, 171:1611–1624CrossRefPubMedGoogle Scholar
  61. Rinaldi L, Avgustinova A, Martin M, Datta D, Solanas G, Prats N, Benitah S A (2017). Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-gamma. Elife, 20:6Google Scholar
  62. Robinson D R, Wu Y M, Lonigro R J, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C, Raymond V (2017). Integrative clinical genomics of metastatic cancer. Nature, 548: 297–303CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rodon J, Carducci M A, Sepulveda-Sanchez J M, Azaro A, Calvo E, Seoane J, Brana I, Sicart E, Gueorguieva I, Cleverly A L(2015). Firstin- human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res, 21:553–560CrossRefPubMedGoogle Scholar
  64. Roe J S, Hwang C I, Somerville T D D, Milazzo J P, Lee E J, Da Silva B, Maiorino L, Tiriac H, Young C M, Miyabayashi K (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170:875–888CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shackleton M, Quintana E, Fearon E R, Morrison S J (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 138:822–829CrossRefPubMedGoogle Scholar
  66. Sheffield N C, Pierron G, Klughammer J, Datlinger P, Schonegger A, Schuster M, Hadler J, Surdez D, Guillemot D, Lapouble E (2017). DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med, 23:386–395CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sinkala E, Sollier-Christen E, Renier C, Rosas-Canyelles E, Che J, Heirich K, Duncombe T A, Vlassakis J, Yamauchi K A, Huang H (2017). Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun, 8:14622CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tan T Z, Miow Q H, Miki Y, Noda T, Mori S, Huang R Y, Thiery J P (2014). Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med, 6:1279–1293CrossRefPubMedPubMedCentralGoogle Scholar
  69. Thiery J P, Acloque H, Huang R Y, Nieto M A (2009). Epithelialmesenchymal transitions in development and disease. In: Cell. United States. p. 871–890.Google Scholar
  70. Tran H D, Luitel K, Kim M, Zhang K, Longmore G D, Tran D D (2014). Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res, 74:6330–6340CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tsai J H, Donaher J L, Murphy D A, Chau S, Yang J (2012). Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 22:725–736CrossRefPubMedPubMedCentralGoogle Scholar
  72. Valastyan S, Weinberg R A (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147:275–292CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wishart D S (2015). Is Cancer a Genetic Disease or a Metabolic Disease? In: EBioMedicine. p. 478–479.Google Scholar
  74. Yates L R, Knappskog S, Wedge D, Farmery J H R, Gonzalez S, Martincorena I, Alexandrov L B, Van Loo P, Haugland H K, Lilleng P K, (2017). Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell, 32:169–184.e167CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ye X, Brabletz T, Kang Y, Longmore G D, Nieto M A, Stanger B Z, Yang J, Weinberg R A (2017). Upholding a role for EMT in breast cancer metastasis. Nature, 547:E1–e3CrossRefPubMedGoogle Scholar
  76. Ye X, Tam W L, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, Weinberg R A (2015). Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature, 525: 256–260. Epub 2015/09/04.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yeung K T, Yang J. 2017. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol, 11:28–39CrossRefPubMedGoogle Scholar
  78. Yu M, Bardia A, Wittner B S, Stott S L, Smas M E, Ting D T, Isakoff S J, Ciciliano J C, Wells M N, Shah A M(2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339:580–584CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zehir A, Benayed R, Shah R H, Syed A, Middha S, Kim H R, Srinivasan P, Gao J, Chakravarty D, Devlin S M (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med, 23:703–713CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zheng X, Carstens J L, Kim J, Scheible M, Kaye J, Sugimoto H, Wu C C, LeBleu V S, Kalluri R (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527:525–530CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhu S, Zhang X, Weichert-Leahey N, Dong Z, Zhang C, Lopez G, Tao T, He S, Wood A C, Oldridge D (2017). LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis. Cancer Cell, 32:310–323.e315CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dingcheng Gao
    • 1
  • Vivek Mittal
    • 1
  • Yi Ban
    • 1
  • Ana Rita Lourenco
    • 1
  • Shira Yomtoubian
    • 1
  • Sharrell Lee
    • 1
  1. 1.Department of Cardiothoracic Surgery, Department of Cell and Developmental BiologyNeuberger Berman Lung Cancer Center, Weill Cornell MedicineNew YorkUSA

Personalised recommendations