Advertisement

Catalytic Efficiency, Structure, and Recycling Behavior of Electrospun Polyvinyl Alcohol-Xylanase Fibers Cross-Linked by Glutaraldehyde

  • Jaqueline Pozzada dos Santos
  • Caroline Lambrecht Dittgen
  • Shanise Lisie Mello El Halal
  • Nathan Levien VanierEmail author
ORIGINAL ARTICLE
  • 17 Downloads

Abstract

A versatile and effective method of producing polyvinyl alcohol (PVA)-xylanase (XY) fibers cross-linked by glutaraldehyde vapor (GA) is reported in the present study. Crosslinking was performed for 30, 60, 90, and 180 min. The morphology, structure, and thermal stability of the fibers were investigated by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analyses (TGA). The enzymatic activity was studied under different storage time and reutilization cycles. The enzyme’s ability to reduce the turbidity of a standard β–glucan solution was also verified. Cross-linked fibers presented denser and more compacted structures. There was an improvement in thermal properties as well as in the recycling and storage efficiency of cross-linked XY–PVA fibers, compared to their non-cross-linked counterparts. Free and 180 min-cross-linked immobilized enzymes were able to reduce the turbidity of the β-glucan solution by a similar degree.

Keywords

Crosslinking Enzyme activity Turbidity 

Notes

Acknowledgements

We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Centro de Microscopia Eletrônica do Sul (CEME-SUL) from Universidade Federal do Rio Grande (FURG). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

  1. 1.
    L.T.A. Souza, L.A.A. Veríssimo, B.C.P. João, M.M. Santoro, R.R. Resende, A.A. Mendes, Biotecnoligia Aplicada à Agroindustria, vol 4 (Blucher, São Paulo, 2017), pp. 529–568CrossRefGoogle Scholar
  2. 2.
    D. Mangana, C. Cornaggiaa, A. Liadovaa, A. Dragaa, R. Ivorya, D.E. Evansb, B.V. McClearya, J. Cereal Sci. 84, 90–94 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, I. Haq, J. Prakash, A. Raj, Int. J. Biol. Macromol. 98, 24–33 (2017)CrossRefGoogle Scholar
  4. 4.
    A.A. Homaei, R. Sariri, F. Vianello, R. Stevanato, J. Chem, Biol. 6, 185–205 (2013)Google Scholar
  5. 5.
    R.P. Shaikh, P. Kumar, Y.E. Choonara, L.C. Toit, V. Pillay, Biofabric. 4, 21 (2012)CrossRefGoogle Scholar
  6. 6.
    D.M. Fernandes, J.L. Andrade, M.K. Lima, M.F. Silva, L.H.C. Andrade, S.M. Lima, A.A. Winkler Hechenleitner, E.A. Gómez Pineda, Polym. Degrad. Stab. 98, 1862–1868 (2013)CrossRefGoogle Scholar
  7. 7.
    E. Piacentini, M. Yan, L. Giorno, J. Membr. Sci. 524, 79–86 (2017)CrossRefGoogle Scholar
  8. 8.
    J.P. dos Santos, E.R. Zavareze, A.R.G. Dias, N.L. Vanier, Int. J. Biol. Macromol. 118, 843–849 (2018)Google Scholar
  9. 9.
    P. Vashisth, V. Pruthi, Mater. Sci. Eng. 67, 304–312 (2016)CrossRefGoogle Scholar
  10. 10.
    N.T.B. Linh, B.T. Lee, J. Biomater. Appl. 27, 255–266 (2012)CrossRefGoogle Scholar
  11. 11.
    M.J. Bailey, P. Biely, K. Poutanen, J. Biotechnol. 23, 257–270 (1992)CrossRefGoogle Scholar
  12. 12.
    L. Wu, X. Yuan, J. Sheng, J. Membr. Sci. 250, 167–173 (2005)CrossRefGoogle Scholar
  13. 13.
    N. Amaly, Y. Si, Y. Chen, A.Y. El-Moghazy, C. Zhao, R. Zhang, G. Sun, Colloids Surf. B. 170, 588–595 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Roberge, R.N. Lewis, F. Shareck, R. Morosoli, D. Kluepfel, C. Dupont, R.N. McElhaney, Proteins: Struct. Funct. Bioinf. 50, 341–354 (2003)CrossRefGoogle Scholar
  15. 15.
    I.E. Moreno-Cortez, J. Romero-García, V. González-González, D.I. García-Gutierrez, M.A. Garza-Navarro, R. Cruz-Silva, Mater. Sci. Eng. C 52, 306–314 (2015)CrossRefGoogle Scholar
  16. 16.
    M.D.A. Porto, J.P. dos Santos, H. Hackbart, G.P. Bruni, L.M. Fonseca, E.R. Zavareze, A.R.G. Dias, Int. J. Biol. Macromol. 126, 834–841 (2019)CrossRefGoogle Scholar
  17. 17.
    C. Tang, C.D. Saquing, P.K. Sarin, R.M. Kelly, S.A. Khan, J. Membr. Sci. 472, 251–260 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Jalaja, N.R. James, Int. J. Biol. Macromol. 73, 270–278 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Jampala, M. Preethi, S. Ramanujam, B.S. Harish, K.B. Uppuluri, V. Anbazhagan, Int. J. Biol. Macromol. 95, 843–849 (2017)CrossRefGoogle Scholar
  20. 20.
    H.U. Rehman, A. Aman, A. Silipo, S.A. Ul Qadar, A. Molinaro, A. Ansari, Food Chem. 139, 1081–1086 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Sathishkumara, S. Kamala-Kannana, M. Choa, J.S. Kimb, T. Hadibaratac, M.R. Salimc, B.-T. Oh, J. Mol. Catal. Enzym. 100, 111–120 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Bhushan, A. Pal, V. Jain, J. Enzym. Res. 1–9 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Agroindustrial Science and TechnologyFederal University of PelotasPelotasBrazil

Personalised recommendations