Characterization of Core-Shell Alginate Capsules

  • Mariana Pereda
  • Denis Poncelet
  • Denis RenardEmail author


A new droplets millifluidic/inverse gelation based process was used to produce core-shell alginate milli-capsules. Water-in-oil (W/O) emulsion dispersed phase containing Ca2+ ions was directly injected into a continuous alginate phase to generate a secondary W/O/W emulsion. Due to the cross-linking of alginate molecules by Ca2+ ions release, core-shell milli-capsules were formed with a very high oil loading. The influence of the curing time and of the storage conditions on capsules physico-chemical properties were investigated. It was first found as expected that alginate membrane thickness increased with curing time in the collecting bath. However, a plateau was reached for the higher curing times, in close relation with previous observations (Martins, Poncelet, Marquis, Davy, & Renard, 2017b) that an external oil layer surrounded the surface of W/O emulsion drops that acted as a barrier and hindered the release of aqueous CaCl2 droplets during curing time. Compression experiments on individual capsules revealed that alginate membrane thickness was inversely related to its mechanical properties, i.e. the thicker membrane, the lower surface Young modulus. Surface Young modulus ranged from 61 to 26 N/m at curing times of 3 and 45 min, respectively. This result was explained in terms of enhanced swelling properties of alginate membrane with curing time or storage conditions. Drying capsules led to much more resistant membranes due to the loss of water. Oil loading of 80 wt% was obtained for dry capsules whatever the conditions used.


Millifluidic Encapsulation Inverse gelation Alginate Sunflower oil 



We kindly acknowledge the supply of PGPR 90 by Danisco (France), the supply of alginate by Cargill (France), the technical assistance of Jean-Eudes Megret for compression experiments, and the financial support of one author (Mariana Pereda) by the National Research Council of Republic Argentina (CONICET) through the program “Becas en el Exterior para Jóvenes Investigadores del CONICET” (Argentina).

Supplementary material

11483_2019_9595_MOESM1_ESM.docx (495 kb)
ESM 1 (DOCX 494 kb)


  1. 1.
    B. Lupo, A. Maestro, M. Porras, J.M. Gutiérrez, C. González, Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocoll. 38, 56–65 (2014)CrossRefGoogle Scholar
  2. 2.
    E. Martins, D. Renard, J. Davy, M. Marquis, D. Poncelet, Oil core microcapsules by inverse gelation technique. J. Microencapsul. 32(1), 86–95 (2015)CrossRefGoogle Scholar
  3. 3.
    S.J. Risch, G.A.A. Reineccius, Flavor Encapsulation, ACS SymposiumSeries 370 (American Chemical Society, Washington, DC, 1988)CrossRefGoogle Scholar
  4. 4.
    M. Jin, Y. Zheng, Q. Hu, Preparation and characterization of bovine serum albumin alginate/chitosan microspheres for oral administration. Asian J. Pharm. Sci. 4(4), 215–220 (2009)Google Scholar
  5. 5.
    K. Ziani, Y. Fang, D.J. McClements, Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem. 134(2), 1106–1112 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Ouwerx, N. Velings, M.M. Mestdagh, M.A.V. Axelos, Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks 6(5), 393–408 (1998)CrossRefGoogle Scholar
  7. 7.
    D. Poncelet, V. Babak, C. Dulieu, A. Picot, A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloids Surf. A Physicochem. Eng. Asp. 155(2–3), 171–176 (1999)CrossRefGoogle Scholar
  8. 8.
    D. Quong, R.J. Neufeld, G. Skjåk-Bræk, D. Poncelet, External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation. Biotechnol. Bioeng. 57(4), 438–446 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Abang, E.S. Chan, D. Poncelet, Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique. J. Microencapsul. 29(5), 417–428 (2012)CrossRefGoogle Scholar
  10. 10.
    E. Martins, D. Poncelet, D. Renard, A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique. React. Funct. Polym. 114, 49–57 (2017a)CrossRefGoogle Scholar
  11. 11.
    E. Martins, D. Poncelet, M. Marquis, J. Davy, D. Renard, Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocoll. 63, 447–456 (2017b)CrossRefGoogle Scholar
  12. 12.
    J.-Y. Wang, Y. Jin, R. Xie, J.-Y. Liu, X.-J. Ju, T. Meng, L.-Y. Chu, Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. J. Colloid Interface Sci. 353, 61–68 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Schmit, L. Courbin, M. Marquis, D. Renard, P. Panizza, A pendant drop method for the production of calibrated double emulsions and emulsion gels. Rsc Advances 4(54), 28,504–28,510 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Rachik, D. Barthes-Biesel, M. Carin, F. Edwards-Levy, Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness. J. Colloid Interface Sci. 301(1), 217–226 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Fery, R. Weinkamer, Mechanical properties of micro-and nanocapsules: Single-capsule measurements. Polymer 48(25), 7221–7235 (2007)CrossRefGoogle Scholar
  16. 16.
    A.M. Al-Sabagh, The relevance HLB of surfactants on the stability of asphalt emulsion. Colloids Surf. A Physicochem. Eng. Asp. 204(1–3), 73–83 (2002)CrossRefGoogle Scholar
  17. 17.
    A.L. Márquez, A. Medrano, L.A. Panizzolo, J.R. Wagner, Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. J. Colloid Interface Sci. 341(1), 101–108 (2010)CrossRefGoogle Scholar
  18. 18.
    J.H. Su, J. Flanagan, Y. Hemar, H. Singh, Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocoll. 20(2–3), 261–268 (2006)CrossRefGoogle Scholar
  19. 19.
    K.S. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction. J. Phys. Chem. Solids 120, 167–172 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Souza, J.C. Santos, M.M. Conceição, M.C. Silva, S. Prasad, A thermoanalytic and kinetic study of sunflower oil. Braz. J. Chem. Eng. 21(2), 265–273 (2004)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y., Huang, Z., Zhang, J., Wu, W., Wang, M., & Fan, L. (2010). Thermal Degradation of Sodium Alginate-Incorporated Soy Protein Isolate/Glycerol Composite Membranes.Google Scholar
  22. 22.
    J.P. Soares, J.E. Santos, G.O. Chierice, E.T.G. Cavalheiro, Thermal behavior of alginic acid and its sodium salt. Eclética Química 29(2), 57–64 (2004)CrossRefGoogle Scholar
  23. 23.
    A.K. Pawlik, Duplex emulsions for healthy foods (Doctoral dissertation, University of Birmingham, 2012)Google Scholar
  24. 24.
    A. Gray, S. Egan, S. Bakalis, Z. Zhang, Determination of microcapsule physicochemical, structural, and mechanical properties. Particuology 24, 32–43 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Leick, S. Henning, P. Degen, D. Suter, H. Rehage, Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus. Phys. Chem. Chem. Phys. 12(12), 2950–2958 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Blandino, M. Macias, D. Cantero, Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J. Biosci. Bioeng. 88(6), 686–689 (1999)CrossRefGoogle Scholar
  27. 27.
    E. Martins, D. Poncelet, C.R. Ramires, D. Renard, Oil encapsulation techniques using alginate as encapsulating agent: Applications and drawbacks. J. Microencapsul. 34(8), 754–771 (2017c)CrossRefGoogle Scholar
  28. 28.
    M. Briššová, I. Lacík, A.C. Powers, A.V. Anilkumar, T. Wang, Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39(1), 61–70 (1998)CrossRefGoogle Scholar
  29. 29.
    M.P. Neubauer, M. Poehlmann, A. Fery, Microcapsule mechanics: From stability to function. Adv. Colloid Interf. Sci. 207, 65–80 (2014)CrossRefGoogle Scholar
  30. 30.
    E.S. Chan, T.K. Lim, W.P. Voo, R. Pogaku, B.T. Tey, Z. Zhang, Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9(3), 228–234 (2011)CrossRefGoogle Scholar
  31. 31.
    Z. Marcadé-Prieto, Zhang. Mechanical characterization of microspheres - capsules, cells and microspheres: A review. J. Microencapsul. 29(3), 277–285 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Lekka, D. Sainz-Serp, A.J. Kulik, C. Wandrey, Hydrogel Microspheres: Influence of Chemical Composition on Surface Morphology, Local Elastic Properties, and Bulk Mechanical Characteristics. Langmuir 20, 9968–9977 (2004)CrossRefGoogle Scholar
  33. 33.
    M. Carin, D. Barthès-Biesel, F. Edwards-Lévy, C. Postel, D.C. Andrei, Compression of biocompatible liquid-filled HSA-alginate capsules: Determination of the membrane mechanical properties. Biotechnol. Bioeng. 82(2), 207–212 (2003)CrossRefGoogle Scholar
  34. 34.
    M.W. Keller, N.R. Sottos, Mechanical properties of microcapsules used in a self-healing polymer. Exp. Mech. 46(6), 725–733 (2006)CrossRefGoogle Scholar
  35. 35.
    S. Leick, A. Kemper, H. Rehage, Alginate/poly-L-lysine capsules: mechanical properties and drug releasecharacteristics. Soft Matter 7, 6684–6694 (2011)CrossRefGoogle Scholar
  36. 36.
    G.B. Messaoud, L. Sánchez-González, A. Jacquot, L. Probst, S. Desobry, Alginate/sodium caseinate aqueous-core capsules: A pH-responsive matrix. J. Colloid Interface Sci. 440, 1–8 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Leick, M. Kott, P. Degen, S. Henning, T. Päsler, D. Suter, H. Rehage, Mechanical properties of liquid-filled shellac composite capsules. Phys. Chem. Chem. Phys. 13(7), 2765–2773 (2011)CrossRefGoogle Scholar
  38. 38.
    E. Zwar, A. Kemna, L. Richter, P. Degen, H. Rehage, Production, deformation and mechanical investigation of magnetic alginate capsules. J. Phys. Condens. Matter 30(8) (2018) number 085101Google Scholar
  39. 39.
    P. Lopez-Sanchez, N. Fredriksson, A. Larsson, A. Altskärc, A. Strömb, High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocoll. 84, 26–33 (2018)CrossRefGoogle Scholar
  40. 40.
    P.E. Ramos, P. Silva, M.M. Alario, L.M. Pastrana, J.A. Teixeira, M.A. Cerqueira, A.A. Vicente, Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll. 77, 8–16 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mariana Pereda
    • 1
    • 2
    • 3
  • Denis Poncelet
    • 2
  • Denis Renard
    • 3
    Email author
  1. 1.Institute of Material Science and Technology (INTEMA) - National University of Mar del PlataMar del PlataArgentina
  2. 2.Process Engineering for Environment and Food Laboratory, ONIRISNantesFrance
  3. 3.UR1268 Biopolymères Interactions Assemblages, INRANantesFrance

Personalised recommendations