Advertisement

Food Biophysics

, Volume 14, Issue 4, pp 437–445 | Cite as

Continuously Distributed Glass Transition of Maca (Lepidium meyenii Walpers) Powder and Impact on Caking Properties

  • Alex Eduardo Alvino Granados
  • Suwalee Fongin
  • Yoshio Hagura
  • Kiyoshi KawaiEmail author
ORIGINAL ARTICLE
  • 66 Downloads

Abstract

Water sorption isotherm, glass transition temperature (Tg), and caking properties of maca (Lepidium meyenii Walpers) powder were investigated. A broad endothermic shift reflecting continuously distributed glass transition was detected by differential scanning calorimetry, which prompted the evaluation of onset Tg and offset Tg. From the onset and offset Tg curves and water sorption isotherm, critical water activity (water activity at glass transition temperature of 25 °C) was determined to be 0.258 for the onset Tg and 0.480 for the offset Tg. The critical water activity values were validated by isothermal mechanical relaxation measurement. Caking properties of maca powder were compared with maltodextrin. The degree of caking and cake hardness for maltodextrin increased at a water activity just above critical water activity for onset Tg. Maca powder, on the other hand, showed a small degree of caking in the water activity range of 0.225 to 0.576, and the degree of caking drastically increased at a higher water activity. The hardness of maca cakes increased gradually at water activity values greater than 0.432. Since maca powder showed a continuously distributed glass transition, the molecular mobility required for caking was considered to have been provided incrementally by the increase in water activity above critical water activity for the onset Tg.

Keywords

Maca powder Water sorption isotherm Glass transition temperature Critical water activity Caking 

Notes

Acknowledgments

The authors thank San-ei Sucrochemical, Co., Ltd. for providing the maltodextrin. The authors also acknowledge Professor Toru Suzuki (Tokyo University of Marine Science and Technology) for technical support for the X-ray measurements.

References

  1. 1.
    M. Hermann, T. Bernet, Agric. Biodivers. Livelihoods discuss. Pap. 1. Bioversity Int. Rome. Italy., 66 (2009)Google Scholar
  2. 2.
    H.O. Meissner, A. Mscisz, E. Piatkowska, M. Baraniak, S. Mielcarek, B. Kedzia, E. Holderna-Kedzia, P. Pisulewski, Int. J. Biomed. Sci. 12, 9 (2016)Google Scholar
  3. 3.
    Ministerio de Agricultura y Riego del Peru, Anuario Estadístico de La Producción Agrícola y Ganadera 2015 (2016)Google Scholar
  4. 4.
    F. Fan, Y.H. Roos, Food Eng. Rev., 1 (2017)Google Scholar
  5. 5.
    Y.H. Roos, Annu. Rev. Food Sci. Technol. 1(1), 469–496 (2010)PubMedGoogle Scholar
  6. 6.
    L. Slade, H. Levine, J. Food Eng. 22(1-4), 143–188 (1994)Google Scholar
  7. 7.
    C.A. Angell, R.D. Bressel, J.L. Green, H. Kanno, M. Oguni, E.J. Sare, J. Food Eng. 22(1-4), 115–142 (1994)Google Scholar
  8. 8.
    J.M. Aguilera, G. Levi, M. Karel, Biotechnol. Prog. 9(6), 651–654 (1993)Google Scholar
  9. 9.
    L.E. Chuy, T.P. Labuza, J. Food Sci. 59(1), 43–46 (1994)Google Scholar
  10. 10.
    M. Karel, S. Anglea, P. Buera, R. Karmas, G. Levi, Y. Roos, Thermochim. Acta 246(2), 249–269 (1994)Google Scholar
  11. 11.
    C. Vega, Y.H. Roos, Food Biophys. 2(1), 10–19 (2007)Google Scholar
  12. 12.
    K.J. Zeleznak, R.C. Hoseney, Cereal Chem. 64, 121 (1987)Google Scholar
  13. 13.
    Y. Roos, Carbohydr. Res. 238, 39–48 (1993)Google Scholar
  14. 14.
    K. Fukami, K. Kawai, S. Takeuchi, Y. Harada, Y. Hagura, Food Biophys. 11(4), 410–416 (2016)Google Scholar
  15. 15.
    S. Palzer, Chem. Eng. Sci. 60(14), 3959–3968 (2005)Google Scholar
  16. 16.
    Y, H. Roos, in Phase Transitions in Foods, 193–245 (1995)Google Scholar
  17. 17.
    J.M. Aguilera, J.M. del Valle, M. Karel, Trends Food Sci. Technol. 6(5), 149–155 (1995)Google Scholar
  18. 18.
    N. Descamps, S. Palzer, Y.H. Roos, J.J. Fitzpatrick, J. Food Eng. 119(4), 809–813 (2013)Google Scholar
  19. 19.
    G.E. Downton, J.L. Flores-Luna, C.J. King, Ind. Eng. Chem. Fundam. 21(4), 447–451 (1982)Google Scholar
  20. 20.
    M. Peleg, C.H. Mannheim, J. Food Process. Preserv. 1(1), 3–11 (1977)Google Scholar
  21. 21.
    S.N. Ronkart, M. Paquot, C.S. Blecker, C. Fougnies, L. Doran, J.C. Lambrechts, B. Norberg, C. Deroanne, Food Biophys. 4(1), 49–58 (2009)Google Scholar
  22. 22.
    L.H. Mosquera, G. Moraga, P.F. de Córdoba, N. Martínez-Navarrete, Food Biophys. 6(3), 397–406 (2011)Google Scholar
  23. 23.
    A. Dini, G. Migliuolo, L. Rastrelli, P. Saturnino, O. Schettino, Food Chem. 49(4), 347–349 (1994)Google Scholar
  24. 24.
    K. Valentová, D. Buckiová, V. Křen, J. Pěknicová, J. Ulrichová, V. Šimánek, Cell Biol. Toxicol. 22(2), 91–99 (2006)PubMedGoogle Scholar
  25. 25.
    G.G. Rondán-Sanabria, F. Finardi-Filho, Food Chem. 114(2), 492–498 (2009)Google Scholar
  26. 26.
    S. Fongin, A.E. Alvino Granados, N. Harnkarnsujarit, Y. Hagura, K. Kawai, J. Food Eng. 247, 95–103 (2019)Google Scholar
  27. 27.
    S. Fongin, K. Kawai, N. Harnkarnsujarit, Y. Hagura, J. Food Eng. 210, 91–97 (2017)Google Scholar
  28. 28.
    K. Kawai, K. Fukami, K. Yamamoto, Carbohydr. Polym. 67(4), 530–535 (2007)Google Scholar
  29. 29.
    E.J. Quirijns, A.J.B. Van Boxtel, W.K.P. Van Loon, G. Van Straten, J. Sci. Food Agric. 85(11), 1805–1814 (2005)Google Scholar
  30. 30.
    K. Kawai, T. Hagiwara, R. Takai, T. Suzuki, Pharm. Res. 22(3), 490–495 (2005)PubMedGoogle Scholar
  31. 31.
    J.S. Jothi, T. Ebara, Y. Hagura, K. Kawai, J. Food Eng. 237, 1–8 (2018)Google Scholar
  32. 32.
    A. Farahnaky, N. Mansoori, M. Majzoobi, F. Badii, Food Bioprod. Process. 98, 133–141 (2016)Google Scholar
  33. 33.
    L. Zhang, G. Li, S. Wang, W. Yao, F. Zhu, Food Chem. 218, 56–63 (2017)PubMedGoogle Scholar
  34. 34.
    P. Thanatuksorn, K. Kawai, K. Kajiwara, T. Suzuki, J. Sci. Food Agric. 89(3), 430–435 (2009)Google Scholar
  35. 35.
    A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, Food Bioprod. Process. 80(2), 118–128 (2002)Google Scholar
  36. 36.
    C.T. Kiranoudis, Z.B. Maroulis, E. Tsami, D. Marinoskouris, J. Food Eng. 20(1), 55–74 (1993)Google Scholar
  37. 37.
    B.K. Koua, P.M.E. Koffi, P. Gbaha, S. Toure, J. Food Sci. Technol. 51(9), 1711–1723 (2014)PubMedGoogle Scholar
  38. 38.
    B.A. Bolton, J.R. Scherer, J. Phys. Chem. 93(22), 7635–7640 (1989)Google Scholar
  39. 39.
    A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, J. Food Eng. 61(3), 297–307 (2004)Google Scholar
  40. 40.
    M.S. Rahman, R.H. Al-Belushi, Int. J. Food Prop. 9(3), 421–437 (2006)Google Scholar
  41. 41.
    L.M. Wang, V. Velikov, C.A. Angell, J. Chem. Phys. 117(22), 10184–10192 (2002)Google Scholar
  42. 42.
    G. Sartor, E. Mayer, G.P. Johari, Biophys. J. 66(1), 249–258 (1994)PubMedPubMedCentralGoogle Scholar
  43. 43.
    K. Kawai, Y. Hagura, Carbohydr. Polym. 89(3), 836–841 (2012)PubMedGoogle Scholar
  44. 44.
    D. Hughes, C. Tedeschi, B. Leuenberger, M. Roussenova, A. Coveney, R. Richardson, G.B. Bönisch, M.A. Alam, J. Ubbink, Food Hydrocoll. 58, 316–323 (2016)Google Scholar
  45. 45.
    D.J. Hughes, G.B. Bönisch, T. Zwick, C. Schäfer, C. Tedeschi, B. Leuenberger, F. Martini, G. Mencarini, M. Geppi, M.A. Alam, J. Ubbink, Carbohydr. Polym. 199, 1–10 (2018)PubMedGoogle Scholar
  46. 46.
    C. Tedeschi, B. Leuenberger, J. Ubbink, Food Hydrocoll. 58, 75–88 (2016)Google Scholar
  47. 47.
    G.P. Johari, A. Hallbrucker, E. Mayer, Nature 330(6148), 552–553 (1987)Google Scholar
  48. 48.
    S. Sastry, Nature 398(6727), 467–469 (1999)Google Scholar
  49. 49.
    J.J. Fitzpatrick, M. Hodnett, M. Twomey, P.S.M. Cerqueira, J. O’Flynn, Y.H. Roos, Powder Technol. 178(2), 119–128 (2007)Google Scholar
  50. 50.
    M. Hartmann, S. Palzer, Powder Technol. 206(1-2), 112–121 (2011)Google Scholar
  51. 51.
    P. Juliano, B. Muhunthan, G.V. Barbosa-Cánovas, J. Food Eng. 72(2), 157–166 (2006)Google Scholar
  52. 52.
    N. Silalai, Y.H. Roos, J. Food Sci. 75, 285 (2010)Google Scholar
  53. 53.
    J. Petit, F. Michaux, C. Jacquot, E. Chávez Montes, J. Dupas, V. Girard, A. Gianfrancesco, J. Scher, C. Gaiani, J. Food Eng. 199, 42–53 (2017)Google Scholar
  54. 54.
    K.D. Foster, J.E. Bronlund, A.H.J. (Tony), Paterson. J. Food Eng. 77(4), 997–1006 (2006)Google Scholar
  55. 55.
    F. Schulnies, T. Kleinschmidt, Int. Dairy J. 85, 105–111 (2018)Google Scholar
  56. 56.
    A.H.J. Paterson, G.F. Brooks, J.E. Bronlund, K.D. Foster, Int. Dairy J. 15(5), 513–519 (2005)Google Scholar
  57. 57.
    P. Saragoni, J.M. Aguilera, P. Bouchon, Food Chem. 104(1), 122–126 (2007)Google Scholar
  58. 58.
    A.H.J. Paterson, U. Bröckel, Procedia Eng. 102, 142–149 (2015)Google Scholar
  59. 59.
    D. Lourdin, P. Colonna, G.J. Brownsey, T.R. Noel, S.G. Ring, Carbohydr. Res. 337(9), 827–833 (2002)PubMedGoogle Scholar
  60. 60.
    T.R. Noel, R. Parker, G.J. Brownsey, I.A. Farhat, W. MacNaughtan, S.G. Ring, J. Agric. Food Chem. 53(22), 8580–8585 (2005)PubMedGoogle Scholar
  61. 61.
    K. Watanabe, K. Kawai, A. Nagoe, T. Suzuki, M. Oguni, Bull. Chem. Soc. Jpn. bcsj., 20180295 (2019)Google Scholar
  62. 62.
    G. Roudaut, M. Maglione, D. Van Dusschoten, M. Le Meste, Cereal Chem. 76(1), 70–77 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alex Eduardo Alvino Granados
    • 1
  • Suwalee Fongin
    • 2
  • Yoshio Hagura
    • 1
  • Kiyoshi Kawai
    • 1
    Email author
  1. 1.Graduate School of Biosphere ScienceHiroshima UniversityHiroshimaJapan
  2. 2.Division of Food Science and Technology, School of Agriculture and Natural ResourceUniversity of PhayaoPhayaoThailand

Personalised recommendations