Advertisement

Fabrication and Characterization of Curcumin-Loaded Complex Coacervates Made of Gum Arabic and Whey Protein Nanofibrils

  • Mehdi Mohammadian
  • Maryam SalamiEmail author
  • Farhad Alavi
  • Shima Momen
  • Zahra Emam-Djomeh
  • Ali Akbar Moosavi-Movahedi
ORIGINAL ARTICLE
  • 20 Downloads

Abstract

In this research, gum Arabic (GA) and whey protein nanofibrils (WPN) were employed for the encapsulation of curcumin as a bioactive compound with low water solubility through the complex coacervation method. The optimum conditions for the formation of complex coacervates were found at WPN/GA weight ratio of 1:1 and pH value of 3.0. The resulting complexes showed a high ability for loading of curcumin as a bioactive cargo. Fluorescence spectroscopy showed that the curcumin was loaded in the hydrophobic core of WPN/GA coacervates. The characteristics of curcumin-loaded coacervates were also evaluated by XRD and FT-IR analysis. The curcumin-loaded complex coacervates dispersions showed a shear thinning behavior. They also showed a good surface activity which makes them excellent candidates to fabricate new functional food emulsions and beverages. The results indicated that the antioxidant activity and photo-stability of curcumin were significantly improved by encapsulation into WPN/GA complexes. A sustained-release profile also was investigated for curcumin from WPN/GA complexes in the simulated gastrointestinal conditions. This study suggested that the WPN/GA electrostatic-driven complexes can be used as efficient carriers for curcumin delivery.

Keywords

Curcumin Gum Arabic Whey protein nanofibrils Complex coacervation Bioactive delivery 

Notes

Acknowledgements

The support from University of Tehran is gratefully acknowledged.

References

  1. 1.
    A. Tapal, P.K. Tiku, Food Chem. 130(4), 960–965 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, D. Ying, Y. Cai, X. Le, Food Hydrocoll. 72, 304–311 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Anitha, V.G. Deepagan, V.D. Rani, D. Menon, S.V. Nair, R. Jayakumar, Carbohydr. Polym. 84(3), 1158–1164 (2011)CrossRefGoogle Scholar
  4. 4.
    F.P. Chen, B.S. Li, C.H. Tang, Food Res. Int. 75, 157–165 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, Y. Cai, D. Ying, Y. Fu, Y. Xiong, X. Le, Int. J. Biol. Macromol. 116, 893–900 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Huang, X. Huang, Y. Gong, H. Xiao, D.J. McClements, K. Hu, Food Res. Int. 87, 1–9 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Chang, T. Wang, Q. Hu, M. Zhou, J. Xue, Y. Luo, Food Hydrocoll. 70, 143–151 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Wu, X. Wang, Int. J. Food Prop. 20(12), 3295–3307 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Xue, Y. Zhang, G. Huang, J. Liu, M. Slavin, L.L. Yu, Food Hydrocoll. 83, 25–35 (2018)CrossRefGoogle Scholar
  10. 10.
    N. Shahgholian, G. Rajabzadeh, Food Hydrocoll. 59, 17–25 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Maldonado, R. Sadeghi, J. Kokini, Colloids Surf. B Biointerfaces 159, 759–769 (2017)CrossRefGoogle Scholar
  12. 12.
    G. You, X.L. Liu, M.M. Zhao, Food Hydrocoll. 74, 255–266 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Eratte, B. Wang, K. Dowling, C.J. Barrow, B.P. Adhikari, Food Funct. 5(11), 2743–2750 (2014)CrossRefGoogle Scholar
  14. 14.
    S.K. Ng, K.L. Nyam, O.M. Lai, I.A. Nehdi, G.H. Chong, C.P. Tan, LWT-Food Sci. Technol. 82, 311–317 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Mohammadian, A. Madadlou, Trends Food Sci. Technol. 75, 115–128 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Mohammadian, M. Salami, S. Momen, F. Alavi, Z. Emam-Djomeh, A.A. Moosavi-Movahedi, Food Hydrocoll. 87, 902–914 (2019)CrossRefGoogle Scholar
  17. 17.
    R.A. Mantovani, J. Fattori, M. Michelon, R.L. Cunha, Food Hydrocoll. 60, 288–298 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Salehiabar, H. Nosrati, E. Javani, F. Aliakbarzadeh, H.K. Manjili, S. Davaran, H. Danafar, Int. J. Biol. Macromol. 115, 83–89 (2018)CrossRefGoogle Scholar
  19. 19.
    S.M. Loveday, J. Su, M.A. Rao, S.G. Anema, H. Singh, Int. Dairy J. 26(2), 133–140 (2012)CrossRefGoogle Scholar
  20. 20.
    S.F. Mirpoor, S.M.H. Hosseini, G.H. Yousefi, Food Hydrocoll. 71, 216–224 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Muhoza, S. Xia, J. Cai, X. Zhang, E. Duhoranimana, J. Su, Food Hydrocoll. 87, 712–722 (2019)CrossRefGoogle Scholar
  22. 22.
    S.G. Gorji, E.G. Gorji, M.A. Mohammadifar, A. Zargaraan, Int. J. Biol. Macromol. 67, 503–511 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Wang, J. Lee, Y.W. Wang, Q. Huang, Biomacromolecules 8(3), 992–997 (2007)CrossRefGoogle Scholar
  24. 24.
    Z. Gao, Y. Huang, B. Hu, K. Zhang, X. Xu, Y. Fang, K. Nishinari, G.O. Phillips, J. Yang, Colloids Surf. A Physicochem. Eng. Asp. 562, 1–7 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mehdi Mohammadian
    • 1
  • Maryam Salami
    • 1
    Email author
  • Farhad Alavi
    • 1
  • Shima Momen
    • 1
  • Zahra Emam-Djomeh
    • 1
  • Ali Akbar Moosavi-Movahedi
    • 2
  1. 1.Department of Food Science and Engineering, University College of Agriculture & Natural ResourcesUniversity of TehranKarajIran
  2. 2.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran

Personalised recommendations