Advertisement

Water Crystallisation of Model Sugar Solutions with Nanobubbles Produced from Dissolved Carbon Dioxide

  • Bhaskar Mani Adhikari
  • Ven Ping Tung
  • Tuyen Truong
  • Nidhi Bansal
  • Bhesh BhandariEmail author
ORIGINAL ARTICLE

Abstract

This study was conducted to examine the influence of CO2 nanobubbles on crystallisation behaviour of water during freezing of model sugar (2–5%w/v) solutions. CO2 gas was dissolved at 0, 1000, and 2000-ppm concentrations before freezing. Carbonated sugar solutions in 50 mL plastic tubes were immersed in a pre-cooled (−15 °C) ethylene glycol bath and left to freeze at −15 °C for 90 min. When the temperature of the solutions reached 0 °C, ultrasound (US; 20 kHz) was emitted in the bath for 20 s duration through a metal horn transducer. The US wave applied in the ethylene glycol bath was expected to propagate to the sugar solutions in the tube and promote gas bubble formation from dissolved CO2, which will trigger the ice nucleation. Obtained freezing curves were analysed for nucleation time and temperature, supercooling degree, and time taken for phase change. In general, the CO2 gas promoted freezing of water, causing a noticeable shift in nucleation parameters. For example, nucleation time of 2000-ppm carbonated water coupled with sonication emission for 20 s (7.8 min) was much shorter than that of controls (pure water without any treatment = 19.1 min and US only = 14.3 min). The former initiated ice nucleation just below sub-zero temperature (−0.2 °C) whereas the onset temperature of controls (pure water without any treatment = −11.3 °C and the US only treatment = −10.3 °C). A similar effect was observed with different model sugar solutions. The current findings can be applied to refine the manufacturing process of ice-cream and frozen desserts by the food industries.

Keywords

Freezing CO2 Micron-nano bubbles Ice nucleation Sugar solutions 

Notes

Acknowledgements

The authors acknowledge the support received through an Australian Government Research Training Program Scholarship to carry out this study.

References

  1. 1.
    H. Kiani, D.W. Sun, Trends Food Sci. Technol. 22(8), 407–426 (2011)CrossRefGoogle Scholar
  2. 2.
    X.F. Cheng, M. Zhang, B. Xu, B. Adhikari, J. Sun, Ultrason. Sonochem. 27, 576–585 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Chow, R. Blindt, R. Chivers, M. Povey, Ultrasonics 43(4), 227–230 (2005)CrossRefGoogle Scholar
  4. 4.
    H. Kiani, Z.H. Zhang, A. Delgado, D.W. Sun, Food Res. Int. 44(9), 2915–2921 (2011)CrossRefGoogle Scholar
  5. 5.
    B.G. Xu, M. Zhang, B. Bhandari, J. Sun, Z. Gao, Innov. Food Sci. Emerg. Technol. 35, 194–203 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Zheng, D.-W. Sun, Trends Food Sci. Technol. 17(1), 16–23 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Petzold, J.M. Aguilera, Food Biophys. 4(4), 378–396 (2009)CrossRefGoogle Scholar
  8. 8.
    R. Chow, R. Blindt, R. Chivers, M. Povey, Ultrasonics 41(8), 595–604 (2003)CrossRefGoogle Scholar
  9. 9.
    T. Hozumi, A. Saito and S. Okawa, in Advances in cold-region thermal engineering and sciences. lecture notes in physics hutter, ed. by K., Wang Y., Beer H. (Springer Berlin, Heidelberg, 1999)Google Scholar
  10. 10.
    T. Inada, X. Zhang, A. Yabe, Y. Kozawa, Int. J. Heat Mass Transf. 44(23), 4523–4531 (2001)CrossRefGoogle Scholar
  11. 11.
    H. Kiani, D.W. Sun, A. Delgado, Z. Zhang, Ultrason. Sonochem. 19(3), 576–581 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Saclier, R. Peczalski, J. Andrieu, Chem. Eng. Sci. 65(10), 3064–3071 (2010)CrossRefGoogle Scholar
  13. 13.
    J.M. Auleda, M. Raventos, J. Sanchez, E. Hernandez, J. Food Eng. 105(2), 289–294 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Xin, M. Zhang, B. Adhikari, Ultrason. Sonochem. 21(5), 1728–1735 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Chandrapala, T. Leong, Food Eng. Rev. 7(2), 143–158 (2015)CrossRefGoogle Scholar
  16. 16.
    M.J. Povey, Curr. Opin. Colloid Interface Sci. 28, 1–6 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Zhang, Z. Zhu, D.W. Sun, Crit. Rev. Food Sci. Nutr. 58(16), 2842–2853 (2018)CrossRefGoogle Scholar
  18. 18.
    B.M. Adhikari, T. Truong, N. Bansal, B. Bhandari, Food Bioprod. Process. 109, 86–97 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Xun, T. Truong, B. Bhandari, Food Biophys 12(1), 52–59 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Truong, M. Palmer, N. Bansal, B. Bhandari, Food Res. Int. 95, 82–90 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Truong, M. Palmer, N. Bansal, B. Bhandari, Int. Dairy J. 93, 45–56 (2019)CrossRefGoogle Scholar
  22. 22.
    K. Wohlgemuth, A. Kordylla, F. Ruether, G. Schembecker, Chem. Eng. Sci. 64(19), 4155–4163 (2009)CrossRefGoogle Scholar
  23. 23.
    K. Wohlgemuth, F. Ruether, G. Schembecker, Chem. Eng. Sci. 65(2), 1016–1027 (2010)CrossRefGoogle Scholar
  24. 24.
    A.A. Ceyhan, O. Baytar, E. Pehlivan, Acta Chim. Slov. 61(2), 391–397 (2014)Google Scholar
  25. 25.
    T. Kleetz, R. Scheel, G. Schembecker, K. Wohlgemuth, Cryst. Growth Des. 18(9), 4906–4910 (2018)CrossRefGoogle Scholar
  26. 26.
    T. Kleetz, F. Braak, N. Wehenkel, G. Schembecker, K. Wohlgemuth, Cryst. Growth Des. 16(3), 1320–1328 (2016)CrossRefGoogle Scholar
  27. 27.
    V.S. Nalajala, V.S. Moholkar, Ultrason. Sonochem. 18(1), 345–355 (2011)CrossRefGoogle Scholar
  28. 28.
    D. Yu, B. Liu, B. Wang, Ultrason. Sonochem. 19(3), 459–463 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Hu, D.W. Sun, W.H. Gao, Z.H. Zhang, X.A. Zeng, Z. Han, Innov. Food Sci. Emerg. Technol. 20, 161–166 (2013)CrossRefGoogle Scholar
  30. 30.
    Z.W. Zhu, D.W. Sun, Z. Zhang, Y.F. Li, L.N. Cheng, LWT-Food Sci. Technol. 92, 404–411 (2018)CrossRefGoogle Scholar
  31. 31.
    T. Hozumi, A. Saito, S. Okawa, T. Matsui, Int. J. Refrig. 25(7), 948–953 (2002)CrossRefGoogle Scholar
  32. 32.
    B.M. Adhikari, T. Truong, N. Bansal, B. Bhandari, Crit. Rev. Food Sci. Nutr. 58(15), 2557–2569 (2018)CrossRefGoogle Scholar
  33. 33.
    T. Truong, M. Palmer, N. Bansal, B. Bhandari, Food Chem. 237, 667–676 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Brabec, V. Mornstein, Cent. Eur. J. Biol. 2(2), 213–221 (2007)Google Scholar
  35. 35.
    T.J. Matula, Philos. Trans. R. Soc. Lond. A 357(1751), 225–249 (1999)CrossRefGoogle Scholar
  36. 36.
    R.J. Wood, J. Lee, M.J. Bussemaker, Ultrason. Sonochem. 38, 351–370 (2017)CrossRefGoogle Scholar
  37. 37.
    L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of acoustics, 4th edn. (Wiley-VCH, 1999), pp. 560. ISBN 0-471-84789-5Google Scholar
  38. 38.
    S. Majumdar, P.S. Kumar, A.B. Pandit, Ultrason. Sonochem. 5(3), 113–118 (1998)CrossRefGoogle Scholar
  39. 39.
    M. S. Rahman, N. Guizani, M. Al-Khaseibi, S. A. Al-Hinai, S. S. Al-Maskri and K. Al-Hamhami, Food Hydrocoll. 16(6), 653–659 (2002)Google Scholar
  40. 40.
    F.Y. Ushikubo, T. Furukawa, R. Nakagawa, et al., Colloids Surf. A Physicochem. Eng. Asp. 361, 31–37 (2010)CrossRefGoogle Scholar
  41. 41.
    W. Cui, L. Jia, Y. Chen, Y. Li, J. Li, S. Mo, Nanoscale Res. Lett. 13(1), 145 (2018)CrossRefGoogle Scholar
  42. 42.
    Z.W. Zhu, Z.B. Chen, Q.Y. Zhou, et al., Food Bioprocess Technol. 11(9), 1615–1626 (2018)CrossRefGoogle Scholar
  43. 43.
    A.E. Delgado, D.-W. Sun, J. Food Eng. 47(3), 157–174 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Agriculture and Food SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.School of ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations