Advertisement

Technological and Structural Properties of Oat Cookies Incorporated with Fructans (Agave tequilana Weber)

  • J. A. Morales-Hernández
  • J. J. Chanona-PérezEmail author
  • S. J. Villanueva-Rodríguez
  • M. J. Perea-Flores
  • J. E. Urias-Silvas
ORIGINAL ARTICLE

Abstract

The beneficial effect of agave fructans on health has been demonstrated gaining popularity as a new prebiotic and functional food ingredient, however, their role as an ingredient and their technological properties is scarcely reported. This work studied the structural and quality features of doughs and cookies added with agave fructans “AF” and compared to systems added with chicory fructans “CF” or without fructans (“WF”) added, to analyse the effect of the chemical structure due to the fructan-type added. For doughs, it was found that AF lowered the water adsorption, causing a short development time and the highest stability during kneading. The texture profile analysis and rheological tests revealed that AF increased springiness and cohesiveness. For cookies, the crumb and lightness were evaluated using a computer vision system. Among the samples, AF promoted a darker and shiny crust and a more homogeneous and compact microstructure. X-ray diffraction analysis demonstrated that AF had the highest values of crystallinity. In order to provide more information about the distribution of carbohydrates (aldoses and ketoses) and gluten proteins in the cookies, a method was developed to specifically stain these molecules, and it successfully described the effect of the fructans incorporated into doughs and cookies. Results from confocal laser scanning microscopy illustrated differences in the distribution of the biopolymers stained. This research provided an improved understanding of the AF addition on the technological properties and the structure–functionally relationship of doughs and cookies, beyond the nutraceutical applications attributed to the AF.

Keywords

Agave fructan Inulin Dough Cookie Microstructure 

Notes

Acknowledgments

This research was financed by project FOS-FINNOVA 172223, from Secretaría de Economía-CONACYT and SIP 20195198 from IPN. Mr. José Antonio Morales Hernández wishes to thank CONACYT and CIATEJ for study grants and IPN for research stay provided.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    M.G. López, J.E. Urías-Silvas, In Recent Advances in Fructooligosaccharides Research, ed. by N. Shiami, N. Benkeblia, S. Ondera (Research Signpost, Kerala, India, 2007), p. 297–310Google Scholar
  2. 2.
    A.L. Márquez-Aguirre, R.M. Camacho-Ruíz, M. Arriaga-Alba, E. Padilla-Camberos, M.R. Kirchmayr, J.L. Blasco, M. González-Avila, Food Funct. 4(8), 1237–1244 (2013)Google Scholar
  3. 3.
    M.G. Lopez, N.A. Mancilla-Margalli, G. Mendoza-Díaz, J. Agric. Food Chem. 51(27), 7835–7840 (2003)Google Scholar
  4. 4.
    J. Arrizon, S. Morel, A. Gschaedler, P. Monsan, Food Chem. 122(1), 123–130 (2010)Google Scholar
  5. 5.
    D. Meyer, S. Bayarri, A. Tárrega, E. Costell, Food Hydrocoll. 25(8), 1881–1890 (2011)Google Scholar
  6. 6.
    D. Peressini, A. Sensidoni, J. Cereal Sci. 49(2), 190–201 (2009)Google Scholar
  7. 7.
    C.M. Rosell, E. Santos, C. Collar, Eur. Food Res. Technol. 231(4), 535–544 (2010)Google Scholar
  8. 8.
    A. Hager, L.A.M. Ryan, C. Schwab, M.G. Gänzle, J.V. O’Doherty, E.K. Arendt, Eur. Food Res. Technol. 232(3), 405–413 (2011)Google Scholar
  9. 9.
    Z. Karolini, P. Bihuniak, E. Piotrowska, L. Wdowik, Pol. J. Food Nutr. Sci. 57(4-B), 267–270 (2007)Google Scholar
  10. 10.
    J. Wang, C. Rosell, C. Benedito-de-Barber, Food Chem. 79(2), 221–226 (2002)Google Scholar
  11. 11.
    D. Meyer, B. Peters, Agro Food Ind. Hi-Tech. 20(3), 48–50 (2009)Google Scholar
  12. 12.
    J. Filipovic, N. Filipovic, V.J. Filipovic, J. Serb. Chem. Soc. 75(2), 195–207 (2010)Google Scholar
  13. 13.
    M.J. Frutos, L. Gulabert-Antón, A. Tomás-Bellido, J.A. Hernández-Herrero, Food Sci. Technol. Int. 14(5), 49–55 (2008)Google Scholar
  14. 14.
    P. Poinot, G. Arvisenet, J. Grua-Priol, C. Fillonneau, A. Le-Bail, C. Prost, Food Chem. 119(4), 1474–1484 (2010)Google Scholar
  15. 15.
    C. Morris, G. Morris, Food Chem. 133(2), 237–248 (2012)Google Scholar
  16. 16.
    P. Santiago-García, E. Mellado-Mojica, F. León-Martínez, M.G. López, LWT - Food Sci. Technol. 77, 100–109 (2017)Google Scholar
  17. 17.
    P. Fustier, F. Castaigne, S.L. Turgeon, C.G. Biliaderis, J. Cereal Sci. 48(1), 144–158 (2008)Google Scholar
  18. 18.
    E. Saldaña, J. Behrens, J. Serrano, F. Ribeiro, M. Almeida, M. Contreras-Castillo, Food Struct. 6, 13–20 (2015)Google Scholar
  19. 19.
    S. Cárdenas-Pérez, J.J. Chanona-Pérez, J. Méndez-Méndez, G. Calderón-Domínguez, R. López-Santiago, M.J. Perea-Flores, I. Árzate-Vázquez, Biosyst. Eng. 159, 46–58 (2017)Google Scholar
  20. 20.
    I. Arzate-Vázquez, J.J. Chanona-Pérez, M.J. Perea-Flores, G. Calderón-Domínguez, M. Moreno-Armendáris, H. Calvo, S. Godoy-Calderón, R. Quevedo, G. Gutiérrez-López, Food Bioprocess Technol. 4(7), 1307–1313 (2011)Google Scholar
  21. 21.
    A. Pérez-Nieto, J.J. Chanona-Pérez, R. Farrera-Rebollo, G. Gutiérrez-López, L. Alamilla-Beltrán, G. Calderón-Domínguez, LWT - Food Sci. Technol. 43(3), 535–543 (2010)Google Scholar
  22. 22.
    G. Barrera, G. Calderón-Domínguez, J.J. Chanona-Pérez, G. Gutiérrez-López, A. León, P. Ribotta, Carbohydr. Polym. 98(2), 1449–1457 (2013)Google Scholar
  23. 23.
    M. Díaz-Ramírez, G. Calderón-Domínguez, J.J. Chanona-Pérez, A. Janovitz-Klapp, R. López-Santiago, R. Farrera-Rebollo, M.P. Salgado-Cruz, Int. J. Food Sci. Technol. 48(8), 1649–1660 (2013)Google Scholar
  24. 24.
    E. Mellado-Mojica, M.G. López-Pérez, Agrociencia 47, 233–244 (2013)Google Scholar
  25. 25.
    J.A. Morales-Hernández, A.K. Singh, S.J. Villanueva-Rodríguez, E. Castro-Camus, Food Chem. 291, 94–100 (2019)Google Scholar
  26. 26.
    H. Espinosa-Andrews, R. Rodríguez-Rodríguez, J. Therm. Anal. Calorim. 132(1), 197–204 (2017)Google Scholar
  27. 27.
    M.S. Blanco Canalis, A.E. León, P.D. Ribotta, Food Chem. 271, 309–317 (2019)Google Scholar
  28. 28.
    M.R. Serial, M.S. Blanco Canalis, M. Carpinella, M.C. Valentinuzzi, A.E. León, P.D. Ribotta, R.H. Acosta, Food Chem. 192, 950–957 (2016)Google Scholar
  29. 29.
    H. Wieser, Food Microbiol. 24(2), 115–119 (2007)Google Scholar
  30. 30.
    Y. Song, Q. Zheng, J. Cereal Sci. 48(1), 58–67 (2008)Google Scholar
  31. 31.
    V. Tolstoguzov, Food Hydrocoll. 11(2), 181–193 (1997)Google Scholar
  32. 32.
    P.S. Belton, J. Cereal Sci. 41(2), 203–211 (2005)Google Scholar
  33. 33.
    M. Le Meste, D. Champion, G. Roudaut, G. Blond, D. Simatos, JFS: Concise. Rev. Hyp. Food Sci. 67(7), 2444–2458 (2002)Google Scholar
  34. 34.
    A. Derossi, T. De Pilli, C. Severini, Food Biophys. 8(4), 223–232 (2013)Google Scholar
  35. 35.
    R. Saiah, P. Sreekumar, N. Leblanc, M. Castandet, J. Saiter, Cereal Chem. 84(3), 276–281 (2007)Google Scholar
  36. 36.
    R. Shogren, G. Fanta, F. Felker, Carbohydr. Polym. 64(3), 444–451 (2006)Google Scholar
  37. 37.
    G. Quaglia, Ciencia y Tecnología de la Panificación, 2nd edn. (Acribia, Zaragoza, 1991), pp. 24–27Google Scholar
  38. 38.
    N. Aravind, M. Sissons, C. Fellows, J. Blazek, E. Gilbert, Food Chem. 132(2), 993–1002 (2012)Google Scholar
  39. 39.
    C. Saénz, S. Tapia, J. Chávez, P. Robert, Food Chem. 114(2), 616–622 (2009)Google Scholar
  40. 40.
    P. Robert, P. García, N. Reyes, J. Chávez, J. Santos, Food Chem. 134(1), 1–8 (2012)Google Scholar
  41. 41.
    S. Beirao-da-Costa, C. Duarte, A. Bourbon, A. Pinheiro, M. Januário, A. Vicente, M. Beirao-da-Costa, I. Delgadillo, Food Hydrocoll. 33(2), 199–206 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. A. Morales-Hernández
    • 1
  • J. J. Chanona-Pérez
    • 2
    Email author
  • S. J. Villanueva-Rodríguez
    • 1
  • M. J. Perea-Flores
    • 3
  • J. E. Urias-Silvas
    • 1
  1. 1.Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.CGuadalajaraMexico
  2. 2.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalGustavo A. MaderoMexico
  3. 3.Centro de Nanociencias y Micro y NanotecnologíasInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations