Advertisement

Influence of Disperse Phase Transfer on Properties of Nanoemulsions Containing Oil Droplets with Different Compositions and Physical States

  • Songran Gao
  • David Julian McClementsEmail author
ORIGINAL ARTICLE

Abstract

The impact of the initial oil droplet composition and physical state on molecular exchange processes in mixed oil-in-water nanoemulsions was investigated. Nanoemulsions consisting of model oils (hexadecane or octadecane), non-ionic surfactant (Tween 80), and water were prepared by microfluidization. The physical state of the droplets in the nanoemulsions was varied by altering their thermal history. The evolution of oil droplet size and composition during storage was monitored using dynamic light scattering and differential scanning calorimetry, respectively. The effects of oil phase composition were examined by preparing nanoemulsions containing liquid hexadecane droplets and liquid octadecane droplets mixed together at mass ratios of 100:0, 75:25, 50:50, 25:75 or 0:100 H:O (w/w). Changes in droplet growth and composition during storage depended on the initial mixing ratio of the two kinds of droplets. The higher the proportion of hexadecane droplets present, the faster the rate of droplet growth, which was attributed to its higher water-solubility. The final droplet composition depended on the initial ratio of the different droplets. Second, the impact of droplet physical state was examined by preparing nanoemulsions containing liquid hexadecane droplets and either liquid or solid octadecane droplets. The solidification of the octadecane droplets retarded molecular exchange, but promoted droplet growth in the mixed nanoemulsions. These results may have important implications for understanding molecular exchange processes in complex colloidal dispersions that contain multiple types of oil phase.

Keywords

Mass transfer Mixing ratio Physical state Mixed emulsion Ostwald ripening Compositional ripening Nanoemulsion 

Notes

Acknowledgements

This material was partly based upon work supported by the National Institute of Food and Agriculture, USDA, Massachusetts Agricultural Experiment Station (MAS00491) and USDA, AFRI Grants (2016-08782).

References

  1. 1.
    D.J. McClements, J. Rao, Crit. Rev. Food Sci. Nutr. 51(4), 285–330 (2011)CrossRefGoogle Scholar
  2. 2.
    H.D. Silva, M.Â. Cerqueira, A.A. Vicente, J Food Bioprocess Tech 5(3), 854–867 (2012)CrossRefGoogle Scholar
  3. 3.
    O. Sonneville-Aubrun, J.-T. Simonnet, F. L’Alloret, Adv Coll Int Sci 108, 145–149 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Yukuyama, D. Ghisleni, T. Pinto, N. Bou-Chacra, Int J Cosmetic Sci 38(1), 13–24 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Shah, D. Bhalodia, P. Shelat, Systematic Rev Pharm 1(1) (2010)Google Scholar
  6. 6.
    D.K. Sarker, Curr Drug Deliv 2(4), 297–310 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Donsì, M. Annunziata, M. Sessa, G. Ferrari, LWT-Food Sci Tech 44(9), 1908–1914 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Ezhilarasi, P. Karthik, N. Chhanwal, C. Anandharamakrishnan, Food Bioprocess Tech 6(3), 628–647 (2013)CrossRefGoogle Scholar
  9. 9.
    D.J. McClements, Curr Op Food Sci 4, 1–6 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, E. Cummins, Trends Food Sci 24(1), 30–46 (2012)CrossRefGoogle Scholar
  11. 11.
    C.C. Berton-Carabin, M.H. Ropers, C. Genot, Comp Rev Food Sci Food Safety 13(5), 945–977 (2014)CrossRefGoogle Scholar
  12. 12.
    D.J. McClements, E.A. Decker, J. Food Sci. 65(8), 1270–1282 (2000)CrossRefGoogle Scholar
  13. 13.
    J. Weiss, M. Gibis, V. Schuh, H. Salminen, Meat Sci. 86(1), 196–213 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Salvia-Trujillo, D. McClements, Food Biophysics 11(1), 1 (2016)CrossRefGoogle Scholar
  15. 15.
    J, G. Weers, in Modern aspects of emulsion science, 292–327 (1998)Google Scholar
  16. 16.
    D. J. McClements, Food Emulsions: Principles, Practices, and Techniques. (CRC Press) (2015)Google Scholar
  17. 17.
    A. Aserin, Multiple Emulsion: Technology and Applications (John Wiley & Sons, London, 2008)Google Scholar
  18. 18.
    P. Erni, H.A. Jerri, K. Wong, A. Parker, Soft Matter 8(26), 6958–6967 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Kabalnov, J Disp Sci Tech 22(1), 1–12 (2001)CrossRefGoogle Scholar
  20. 20.
    A.S. Kabalnov, E.D. Shchukin, Adv Coll Int Sci 38, 69–97 (1992)CrossRefGoogle Scholar
  21. 21.
    P. Taylor, Coll Surf A 99(2–3), 175–185 (1995)CrossRefGoogle Scholar
  22. 22.
    B. Binks, P. Fletcher, B. Holt, O. Kuc, P. Beaussoubre, K. Wong, Phys. Chem. Chem. Phys. 12(9), 2219–2226 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Usui, F. Harusawa, T. Sakai, T. Yamashita, H. Sakai, M. Abe, J Oleo Sci 53(12), 611–617 (2004)CrossRefGoogle Scholar
  24. 24.
    B. Binks, J. Clint, P. Fletcher, S. Rippon, S. Lubetkin, P. Mulqueen, Langmuir 15(13), 4495–4501 (1999)CrossRefGoogle Scholar
  25. 25.
    B. Binks, J. Clint, P. Fletcher, S. Rippon, S. Lubetkin, P. Mulqueen, Langmuir 14(19), 5402–5411 (1998)CrossRefGoogle Scholar
  26. 26.
    A. Kabalnov, K. Makarov, O. Shcherbakova, A. Nesmeyanov, J. Fluor. Chem. 50(3), 271–284 (1990)CrossRefGoogle Scholar
  27. 27.
    J. Weiss, D.J. McClements, Langmuir 16(14), 5879–5883 (2000)CrossRefGoogle Scholar
  28. 28.
    D.J. McClements, S.R. Dungan, J. Phys. Chem. 97(28), 7304–7308 (1993)CrossRefGoogle Scholar
  29. 29.
    E. Dickinson, C. Ritzoulis, Y. Yamamoto, H. Logan, Coll Surf B 12(3), 139–146 (1999)CrossRefGoogle Scholar
  30. 30.
    M.E. Erdmann, R. Lautenschlaeger, B. Zeeb, M. Gibis, J. Weiss, LWT-Food Sci Tech 79, 496–502 (2017)CrossRefGoogle Scholar
  31. 31.
    M.E. Erdmann, B. Zeeb, H. Salminen, M. Gibis, R. Lautenschlaeger, J. Weiss, Food Funct. 6(3), 793–804 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Lindfors, P. Skantze, U. Skantze, M. Rasmusson, A. Zackrisson, U. Olsson, Langmuir 22(3), 906–910 (2006)CrossRefGoogle Scholar
  33. 33.
    P. Taylor, Adv Coll Int Sci 106(1), 261–285 (2003)CrossRefGoogle Scholar
  34. 34.
    T.J. Wooster, M. Golding, P. Sanguansri, Langmuir 24(22), 12758–12765 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Weiss, N. Herrmann, D. McClements, Langmuir 15(20), 6652–6657 (1999)CrossRefGoogle Scholar
  36. 36.
    A.A. Peña, C.A. Miller, Adv Coll Int Sci 123, 241–257 (2006)CrossRefGoogle Scholar
  37. 37.
    D.J. McClements, S.R. Dungan, J.B. German, J.E. Kinsella, Coll Surf A 81, 203–210 (1993)CrossRefGoogle Scholar
  38. 38.
    P. C. Hiemenz and P. C. Hiemenz, Principles of Colloid and Surface Chemistry. (M. Dekker New York, 1986)Google Scholar
  39. 39.
    A.L. Ferguson, P.G. Debenedetti, A.Z. Panagiotopoulos, J. Phys. Chem. B 113(18), 6405–6414 (2009)CrossRefGoogle Scholar
  40. 40.
    J. Weiss, E.A. Decker, D.J. McClements, K. Kristbergsson, T. Helgason, T. Awad, J Food Biophysics 3(2), 146–154 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Zeppieri, J. Rodríguez, A.L. López de Ramos, J. Chem. Eng. Data 46(5), 1086–1088 (2001)CrossRefGoogle Scholar
  42. 42.
    U. Yucel, R.J. Elias, J.N. Coupland, J Coll Int Sci 377, 105–113 (2012)CrossRefGoogle Scholar
  43. 43.
    U. Yucel, R.J. Elias, J.N. Coupland, J. Am. Oil Chem. Soc. 90(6), 819–824 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chenoweth Laboratory, Department of Food ScienceUniversity of MassachusettsAmherstUSA

Personalised recommendations