Advertisement

Structure Changes in Relation to Digestibility and IgE-Binding of Glycinin Induced by pH-Shifting Combined with Microbial Transglutaminase-Mediated Modification

  • Anshu YangEmail author
  • Jing Bai
  • Jiaheng Xia
  • Yuqing Gong
  • Junyu Hui
  • Zhihua Wu
  • Xin Li
  • Ping Tong
  • Hongbing ChenEmail author
ORIGINAL ARTICLE
  • 27 Downloads

Abstract

This study aimed to evaluate the effects of pH-shifting treatment combined with microbial transglutaminase (MTG)-mediated modification on the structure, digestibility, and IgE-binding of glycinin. Glycinin was incubated in acidic (pH 1.0) or alkaline (pH 13.0) solutions to induce protein structure to unfolding followed by refolding for 1 h at pH 7.0. Afterwards, glycinin was incubated with MTG under appropriate conditions. Sodium dodecyl sulfate polyacrylamide gel electropheresis(SDS-PAGE), circular dichroism, UV absorption spectra, and surface hydrophobicity were considered to measure the changes in the structure of glycinin. The digestibility and IgE-binding of glycinin were determined by Tricine-SDS-PAGE and ELISA, respectively. The results showed that pH 1.0 shifting caused the unfolding of the spatial structure of glycinin and the formation of some polymers via disulfide bond. After glycinin was incubated with MTG, the protein preferentially underwent embedding and folding. The acidic compound-modified glycinin was stable for digestion. Under pH 13.0 shifting treatment, glycinin was partially hydrolyzed, and the MTG-modified alkaline-treated glycinin was slightly affected with a good digestibility. Compound modification could reduce the IgE-binding of glycinin, especially under alkaline conditions. Our findings suggested that alkaline pH shifting combined with MTG cross-linking can be an efficient approach to reduce the IgE-binding of glycinin with a labile digestion.

Keywords

Glycinin pH-shifting Enzymatic cross-linking Structure IgE-binding 

Notes

Acknowledgments

The authors are grateful for financial support of National Natural Science Foundation of China (No. 31460439, 31760453), National High Technology Research and Development Program of China (863 Program, No. 2013AA102205), Young Scientist Training Program of Jiangxi Province (No. 20122BCB23006), International Science & Technology Cooperation Program of Jiangxi Province (No. 20142BDH80002).

Supplementary material

11483_2019_9580_MOESM1_ESM.docx (2.6 mb)
Fig. S1 Flow chart of the pH-shifting combined with MTG-mediated modification of glycinin (DOCX 2694 kb)

References

  1. 1.
    E.Y. Kim, K.B. Hong, H.J. Suh, H.S. Choi, Food Funct. 6(11), 3512–3521 (2015)Google Scholar
  2. 2.
    S. Hu, H. Liu, S. Qiao, P. He, X. Ma, W. Lu, J Agric Food Chem 61(18), 4406–4410 (2013)Google Scholar
  3. 3.
    B. Liu, D. Teng, Y.L. Yang, X.M. Wang, J.H. Wang, Process Biochem. 47(2), 280–287 (2012)Google Scholar
  4. 4.
    E. Penas, G. Prestamo, F. Polo, R. Gomez, Food Chem. 99(3), 569–573 (2006)Google Scholar
  5. 5.
    Y. Katz, P. Gutierrez-Castrellon, M.G. Gonzalez, R. Rivas, B.W. Lee, P. Alarcon, Clin Rev Allergy Immunol 46(3), 272–281 (2014)Google Scholar
  6. 6.
    H. Yang, A.S. Yang, J.Y. Gao, H.B. Chen, J. Food Sci. 79(11), C2157–C2163 (2014)Google Scholar
  7. 7.
    J. Chen, J. Wang, P. Song, X. Ma, Food Chem. 162, 27–33 (2014)Google Scholar
  8. 8.
    T. Wang, G.X. Qin, Z.W. Sun, Y. Zhao, Crit. Rev. Food Sci. Nutr. 54(7), 850–862 (2014)Google Scholar
  9. 9.
    K. Prak, B. Mikami, T. Itoh, T. Fukuda, N. Maruyama, S. Utsumi, Acta Crystallogr Sect F 69(8), 937–941 (2013)Google Scholar
  10. 10.
    B. Yuan, J. Ren, M. Zhao, D. Luo, L. Gu, LWT Food Sci Technol 46(2), 453–459 (2012)Google Scholar
  11. 11.
    L. Tuppo, R. Spadaccini, C. Alessandri, A. Mari, R. Boelens, Biopolymers 102(5), 416–425 (2014)Google Scholar
  12. 12.
    W. Chen, J.Y. Gao, H.B. Chen, Food Sci. 23, 391–394 (2010)Google Scholar
  13. 13.
    Z. Li, Y. Luo, M. Jiang, J. Aquat, Food Product Technol. 25(3), 350–357 (2015)Google Scholar
  14. 14.
    O.E. Makinen, E. Zannini, P. Koehler, E.K. Arendt, Food Chem. 196, 17–24 (2016)Google Scholar
  15. 15.
    D. Sung, K.M. Ahn, S.Y. Lim, S. Oh, J Sci Food Agric 94(12), 2482–2487 (2014)Google Scholar
  16. 16.
    X. Ma, D. Lozano, H. Ojalvo, R. Chen, E. Lopez Fandiño, I. Molina, Food Sci. Emerg. 29, 143–150 (2015)Google Scholar
  17. 17.
    L. Monaci, S.L. Bavaro, E. De Angelis, L. Monaci, Food Funct. (2017)Google Scholar
  18. 18.
    G.X. Qin, Z.W. Sun, Y. Zhao, Food Agric. Immunol. 21(3), 23–263 (2010)Google Scholar
  19. 19.
    Y. Li, L.Z, Jiang, Y. Yang, R. Wang, F.F. Han, Biomed. Res. Int. (2016)Google Scholar
  20. 20.
    J. Jiang, J. Chen, Y.L. Xiong, J Agric Food Chem 57(16), 7576–7583 (2009)Google Scholar
  21. 21.
    Y. Liang, H.G. Kristinsson, Food Res. Int. 40(6), 668–678 (2007)Google Scholar
  22. 22.
    G. Rabbani, E. Ahmad, N. Zaidi, S. Fatima, R.H. Khan, Cell Biochem. Biophys. 62(3), 487–499 (2012)Google Scholar
  23. 23.
    R. Roychaudhuri, G. Sarath, M. Zeece, J. Markwell, Biochem. Biophys. Acta 1699(1–2), 207–212 (2004)Google Scholar
  24. 24.
    Y.H. Chang, S.Y. Shiau, F.B. Chen, F.R. Lin, LWT Food Sci Technol 44(4), 1107–1112 (2011)Google Scholar
  25. 25.
    R. Porta, C.V.L. Giosafatto, P. di Pierro, A. Sorrentino, L. Mariniello, Amino Acids 44(1), 285–292 (2013)Google Scholar
  26. 26.
    C. Xia, L. Wang, Y. Dong, S. Zhang, S.Q. Shi, L. Cai, J. Li, RSC Adv. 5(101), 82765–82771 (2015)Google Scholar
  27. 27.
    E.F.E. Babiker, M.A.S. han, N. Matsudomi, A. Kato, Food Res. Int. 29(7), 627–634 (1996)Google Scholar
  28. 28.
    L.J. Kang, Y. Matsumura, K. Ikura, J Agric Food Chem 42(1), 159–165 (1994)Google Scholar
  29. 29.
    Y. Chanyongvorakul, Y. Matsumura, M. Nonaka, M. Motoki, T. Mori, J. Food Sci. 60(493), 483–488 (1995)Google Scholar
  30. 30.
    C.H. Tang, H. Wu, Z. Chen, Food Res. Int. 39(1), 87–97 (2006)Google Scholar
  31. 31.
    M.Y. Han, H.Z. Zu, X.L. Xu, G.H. Zhou, J Food Process Preserv 39(3), 309–317 (2015)Google Scholar
  32. 32.
    A.S. Yang, J.H. Xia, Y.Q. Gong, H.B. Chen, Modern Food Sci. Technol. 33(2), 55–60 (2017)Google Scholar
  33. 33.
    D.A. Clare, G. Gharst, S.J. Maleki, T.H. Sanders, J Agric Food Chem 56(22), 10913–10921 (2008)Google Scholar
  34. 34.
    Y. Zhou, J.S. Wang, X.J. Yang, D.H. Lin, Y.F. Gao, Y.J. Su, S. Yang, Y.J. Zhang, J.J. Zheng, Int. J. Food Sci. 2013, 1–8 (2013)Google Scholar
  35. 35.
    M.B. Villas-Boas, M.A. Fernandes, R. de Lima Zollner, F.M. Netto, Int. Dairy J. 25(2), 123–131 (2012)Google Scholar
  36. 36.
    E. Dekking, P. Van Veelen, A. De Ru, E. Kooy Winkelaar, T. Groneveld, W. Nieuwenhuizen, F. Koning, J. Cereal Sci. 47(2), 339–346 (2008)Google Scholar
  37. 37.
    D.H.J. Hou, S.K.C. Chang, J Agric Food Chem 52(12), 3792–3800 (2004)Google Scholar
  38. 38.
    G.L. Ellman, Arch. Biochem. Biophys. 82(1), 70–77 (1959)Google Scholar
  39. 39.
    P. Eyer, D. Kiderlen, F. Worek, Anal. Biochem. 312(2), 224–227 (2003)Google Scholar
  40. 40.
    N. Sreerama, R.W. Woody, Anal. Biochem. 287(2), 252–260 (2000)Google Scholar
  41. 41.
    M. Amigo Benavent, A. Clemente, P. Ferranti, S. Caira, M.D. del Castillo, Food Chem. 129(4), 1598–1605 (2011)Google Scholar
  42. 42.
    A.S. Yang, C.Y. Long, J.H. Xia, P. Tong, Y.F. Cheng, Y. Wang, H.B. Chen, J Sci Food Agric 97(1), 199–206 (2016)Google Scholar
  43. 43.
    J. Xiao, C. Shi, L. Zhang, Y. Li, J. Qi, Y. Wang, Q. Huang, Food Res. Int. 89(1), 540–548 (2016)Google Scholar
  44. 44.
    J. Jiang, Y.L. Xiong, M.C. Newman, G.K. Rentfrow, Food Chem. 132(4), 1944–1950 (2012)Google Scholar
  45. 45.
    C.Y. Zhao, H.F. Liu, M. Fu, X.H. Zhao, CyTA - J Food 14(1), 138–144 (2015)Google Scholar
  46. 46.
    A.L. Gaspar, S.P. de Goes Favoni, Food Chem. 171, 315–322 (2015)Google Scholar
  47. 47.
    P. Zhang, T. Hu, S. Feng, Q. Xu, T. Zheng, M. Zhou, X. Chu, X. Huang, X. Lu, S. Pan, E.C. Li-Chan, H. Hu, Ultrason. Sonochem. 29, 380–387 (2016)Google Scholar
  48. 48.
    X. Rui, Y. Fu, Q. Zhang, W. Li, F. Zare, X. Chen, M. Jiang, M. Dong, LWT Food Sci Technol 71, 234–242 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
  2. 2.Sino-German Joint Research InstituteNanchang UniversityNanchangChina

Personalised recommendations