Advertisement

Effect of Temperature on 3D Printing of Commercial Potato Puree

  • J. Martínez-MonzóEmail author
  • J. Cárdenas
  • P. García-Segovia
ORIGINAL ARTICLE
  • 57 Downloads

Abstract

The temperature and composition of food, during the printing process, maybe a key factor impacting on rheological properties. Currently, there is no evidence of authors analysing the effect of printing temperature on the characteristics of final products. The aim of this paper was to study the printability of potato puree when affected by printing variables, such as printing temperature and the composition of the potato puree. The printing temperature was studied at 10 °C, 20 °C and 30 °C, and the effect of the product composition on the printability was studied by analysing the rheological and textural properties. Viscosity-temperature profiles, flow curves and dynamic oscillation frequency analysis of potato puree were some of the techniques used in rheology analysis. Forward extrusion assays of formulated potato puree were used to study the compression force in the 3D printer. Results showed the formulation with higher content of dehydrated potato puree (38 g of dehydrated potato puree in 250 mL of whole milk) at a temperature of 30 °C were the most stable. The printability increase with the amount of the consistency index and the reduction of behaviour index. The mean force from extrusion test was correlated with printability but the effect of temperature did not help define this parameter.

Keywords

3D printing Rheological properties Extrusion Potato puree 

Notes

References

  1. 1.
    G. Ares, A. Giménez, A. Gámbaro, Instrumental methods to characterize nonoral texture of dulce de leche. J. Texture Stud. 37(5), 553–567 (2006).  https://doi.org/10.1111/j.1745-4603.2006.00068.x CrossRefGoogle Scholar
  2. 2.
    S. Bhattacharya, N. Vasudha, K.S. Krishna Murthy, Rheology of mustard paste: A controlled stress measurement. J. Food Eng. 41(3), 187–191 (1999).  https://doi.org/10.1016/S0260-8774(99)00102-8 CrossRefGoogle Scholar
  3. 3.
    F. Chuanxing, W. Qi, L. Hui, Z. Quancheng, M. Wang, Effects of pea protein on the properties of potato starch-based 3D printing materials. Int. J. Food Eng. 14(3), 1–10 (2018).  https://doi.org/10.1515/ijfe-2017-0297 CrossRefGoogle Scholar
  4. 4.
    I. Dankar, M. Pujolà, F. El Omar, F. Sepulcre, A. Haddarah, Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food Bioprocess Technol. 11(11), 2021–2031 (2018).  https://doi.org/10.1007/s11947-018-2159-5 CrossRefGoogle Scholar
  5. 5.
    A. Derossi, R. Caporizzi, D. Azzollini, C. Severini, Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng. 220, 65–75 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.05.015 CrossRefGoogle Scholar
  6. 6.
    F.C. Godoi, S. Prakash, B.R. Bhandari, 3d printing technologies applied for food design: Status and prospects. J. Food Eng. 179, 44–54 (2016).  https://doi.org/10.1016/j.jfoodeng.2016.01.025 CrossRefGoogle Scholar
  7. 7.
    C.A. Hamilton, G. Alici, M. in het Panhuis, 3D printing vegemite and marmite: Redefining “breadboards”. J. Food Eng. 220, 83–88 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.01.008 CrossRefGoogle Scholar
  8. 8.
    S. Holland, T. Foster, W. MacNaughtan, C. Tuck, Design and characterisation of food grade powders and inks for microstructure control using 3D printing. J. Food Eng. 220, 12–19 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.06.008 CrossRefGoogle Scholar
  9. 9.
    H.W. Kim, H. Bae, H.J. Park, Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. J. Food Eng. 215, 23–32 (2017).  https://doi.org/10.1016/j.jfoodeng.2017.07.017 CrossRefGoogle Scholar
  10. 10.
    C. Le Tohic, J.J. O’Sullivan, K.P. Drapala, V. Chartrin, T. Chan, A.P. Morrison, et al., Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng. 220, 56–64 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.02.003 CrossRefGoogle Scholar
  11. 11.
    M. Lille, A. Nurmela, E. Nordlund, S. Metsä-Kortelainen, N. Sozer, Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng. 220, 20–27 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.04.034 CrossRefGoogle Scholar
  12. 12.
    H. Lipson, M. Kurman, Fabricated: The New World of 3D Printing (John Wiley and Sons, Inc, New York, 2013)Google Scholar
  13. 13.
    J.I. Lipton, Printable food: The technology and its application in human health. Curr. Opin. Biotechnol. 44, 198–201 (2017).  https://doi.org/10.1016/j.copbio.2016.11.015 CrossRefGoogle Scholar
  14. 14.
    Z. Liu, M. Zhang, B. Bhandari, Y. Wang, 3D printing: Printing precision and application in food sector. Trends Food Sci. Technol. 69, 83–94 (2017a, September).  https://doi.org/10.1016/j.tifs.2017.08.018 CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2017b). Impact of Rheological Properties of Mashed Potatoes on 3D Printing.  https://doi.org/10.1016/j.jfoodeng.2017.04.017
  16. 16.
    Z. Liu, M. Zhang, B. Bhandari, C. Yang, Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng. 220, 76–82 (2018a).  https://doi.org/10.1016/j.jfoodeng.2017.04.017 CrossRefGoogle Scholar
  17. 17.
    Z. Liu, M. Zhang, C.h. Yang, Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. Lwt 96(February), 589–596 (2018b).  https://doi.org/10.1016/j.lwt.2018.06.014 CrossRefGoogle Scholar
  18. 18.
    S. Mantihal, S. Prakash, F.C. Godoi, B. Bhandari, Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Sci. Emerg. Technol. 44(September), 21–29 (2017).  https://doi.org/10.1016/j.ifset.2017.09.012 CrossRefGoogle Scholar
  19. 19.
    F. Ronda, S. Pérez-Quirce, A. Angioloni, C. Collar, Impact of viscous dietary fibres on the viscoelastic behaviour of gluten-free formulated rice doughs: A fundamental and empirical rheological approach. Food Hydrocoll. 32(2), 252–262 (2013).  https://doi.org/10.1016/j.foodhyd.2013.01.014 CrossRefGoogle Scholar
  20. 20.
    C. Severini, A. Derossi, D. Azzollini, Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innov. Food Sci. Emerg. Technol. 38, 281–291 (2016).  https://doi.org/10.1016/j.ifset.2016.10.001 CrossRefGoogle Scholar
  21. 21.
    C. Severini, A. Derossi, I. Ricci, R. Caporizzi, A. Fiore, Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng. 220, 89–100 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.08.025 CrossRefGoogle Scholar
  22. 22.
    J.R. Stokes, J.H. Telford, Measuring the yield behaviour of structured fluids. J. Non-Newtonian Fluid Mech. 124(1–3 SPEC. ISS), 137–146 (2004).  https://doi.org/10.1016/j.jnnfm.2004.09.001 CrossRefGoogle Scholar
  23. 23.
    J. Sun, Z. Peng, W. Zhou, J.Y.H. Fuh, G.S. Hong, A. Chiu, A review on 3D printing for customized food fabrication. Procedia Manufacturing 1, 308–319 (2015).  https://doi.org/10.1016/j.promfg.2015.09.057 CrossRefGoogle Scholar
  24. 24.
    J. Sun, W. Zhou, L. Yan, D. Huang, L.y. Lin, Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng. 220, 1–11 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.02.028 CrossRefGoogle Scholar
  25. 25.
    F. Yang, M. Zhang, B. Bhandari, Recent development in 3D food printing. Crit. Rev. Food Sci. Nutr. 57(14), 3145–3153 (2017).  https://doi.org/10.1080/10408398.2015.1094732 CrossRefGoogle Scholar
  26. 26.
    F. Yang, M. Zhang, B. Bhandari, Y. Liu, Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT Food Sci. Technol. 87, 67–76 (2018).  https://doi.org/10.1016/j.lwt.2017.08.054 CrossRefGoogle Scholar
  27. 27.
    M. Zhang, A. Vora, W. Han, R.J. Wojtecki, H. Maune, A.B.A. Le, et al., Dual-responsive hydrogels for direct-write 3D printing. Macromolecules 48(18), 6482–6488 (2015).  https://doi.org/10.1021/acs.macromol.5b01550 CrossRefGoogle Scholar
  28. 28.
    L. Zhang, Y. Lou, M.A.I. Schutyser, 3D printing of cereal-based food structures containing probiotics. Food Struct. 18(August), 14–22 (2018).  https://doi.org/10.1016/j.foostr.2018.10.002 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Martínez-Monzó
    • 1
    Email author
  • J. Cárdenas
    • 1
  • P. García-Segovia
    • 1
  1. 1.Food Technology DepartmentUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations