Effects of Carrier Agents and Relative Humidity on the Physicochemical and Microstructural Characteristics of Hot Air-Dried Asian Pear (Pyrus pyrifolia Nakai cv. Niitaka) Powder

  • Gui-Hun Jiang
  • Kashif Ameer
  • Jong-Bang EunEmail author


For improving the stability of Asian pear powder (APP), rice bran dietary fiber (RD) (used for the first time) and maltodextrin (MD) were employed as carrier agents; the physicochemical and microstructural characteristics of APP during room storage at various relative humidity (RH) levels for 25 days were then evaluated. The RD-containing APP had a higher glass transition temperature, increased flowability, smaller particle size, and lower water adsorption capacity compared to the MD-containing APP. The comparison of the RD- and MD-containing APP samples revealed that the former had a higher total phenolic content and antioxidant activity, and showed fewer changes in color and agglomeration at the various RH levels. It was evident that the cracked appearance of APP samples was related to the higher degradation rate of the total phenols and higher antioxidant activity, especially at RH levels above 54%, during storage. FT-IR spectroscopy showed the chemical changes in APP caused by the carrier agents and RH. The results of the present study indicate that RD improved the functionality and storage stability of APP compared to MD; RD could be used as a potential carrier agent.


Asian pear powder Rice bran dietary fiber Maltodextrin Relative humidity Physicochemical Microstructural characteristics 



This study received funding from the BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    M.K. Thomsen, L. Jespersen, K. Sjostrom, J. Risbo, L.H. Skibsted, J. Agric. Food Chem. 53(23), 9182–9185 (2005)CrossRefGoogle Scholar
  2. 2.
    Y. H. Roos, Academic Press, San Diego, (1995)Google Scholar
  3. 3.
    B.R. Bhandari, T. Howes, J. Food Eng. 40(1-2), 71–79 (1999)CrossRefGoogle Scholar
  4. 4.
    L.Y. Kuan, Y.Y. Thoo, L.F. Siow, Int. J. Food Sci. Technol. 51(3), 700–709 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Farahnaky, N. Mansoori, M. Majzoobi, F. Badii, Food Bioprod. Process. 98, 133–141 (2016)CrossRefGoogle Scholar
  6. 6.
    S.S. Sablani, A.K. Shestha, B.R. Bhandari, J. Food Eng. 87(3), 416–421 (2008)CrossRefGoogle Scholar
  7. 7.
    K. Kaderides, A.M. Goula, Food Res. Int. 100(Pt 1), 612–622 (2017)CrossRefGoogle Scholar
  8. 8.
    Y.S. Choi, J.H. Choi, D.J. Han, H.Y. Kim, M.A. Lee, H.W. Kim, J.Y. Jeong, C.J. Kim, Meat Sci. 92, 266–271 (2009)CrossRefGoogle Scholar
  9. 9.
    Y.S. Choi, J.H. Choi, D.J. Han, H.Y. Kim, M.A. Lee, H.W. Kim, J.W. Lee, H.J. Chung, C.J. Kim, Meat Sci. 84(1), 212–218 (2010)CrossRefGoogle Scholar
  10. 10.
    Y.S. Choi, J.H. Choi, D.J. Han, H.Y. Kim, M.A. Lee, J.Y. Jeong, H.J. Chung, C.J. Kim, Meat Sci. 84(3), 557–563 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Phimolsiripol, A. Mukprasirt, R. Schoenlechner, J. Cereal Sci. 56(2), 389–395 (2012)CrossRefGoogle Scholar
  12. 12.
    AOAC, (Vol. 41, 16th Ed.). Washington DC: Association of Official Analytical Chemists, Arlington, VA, USA (1995)Google Scholar
  13. 13.
    L. Prosky, N.G. Asp, T. Schweizer, J. DeVries, I. Furda, J. Assoc. Off. Anal. Chem. 71, 1017–1023 (1987)Google Scholar
  14. 14.
    S.S. Claye, A. Idouraine, C.W. Weber, Food Chem. 57(2), 305–310 (1996)CrossRefGoogle Scholar
  15. 15.
    K. Ramachandraiah, K.B. Chin, J. Sci. Food Agric. 97(13), 4539–4547 (2017)CrossRefGoogle Scholar
  16. 16.
    R.L. Carr, Chem. Eng. J. 72, 163–168 (1965)Google Scholar
  17. 17.
    H.H. Hausner, Int. J. Powder Metall. (3), 7–13 (1967)Google Scholar
  18. 18.
    N. Jinapong, M. Suphantharika, P. Jamnong, J. Food Eng. 84(2), 194–205 (2008)CrossRefGoogle Scholar
  19. 19.
    C.C. Busso, C. Schebor, M.C. Zamora, J. Chirifie, LWT−Food Sci. Technol. 40, 1792–1797 (2007)Google Scholar
  20. 20.
    E. Aydin, D. Gocmen, LWT – Food Sci. Technol. 60(1), 385–392 (2015)CrossRefGoogle Scholar
  21. 21.
    E. Uribe, A. Delgadillo, C. Giovagnoli-Vicuna, I. Quispe-Fuentes, L. Zura-Bravo, J. Chem. 347532, 8 (2015)Google Scholar
  22. 22.
    A. Eghdami, F. Sadegh, J. Org. Chem. 2, 81–84 (2010)Google Scholar
  23. 23.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros–Zevallos, D.H. Byrne, J. Food Comp. Anal. 19(6-7), 669–675 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Seerangurayar, A. Manickavasagan, A.M. Al-Ismaili, Y.A. Al-Mulla, J. Food Eng. 215, 33–43 (2017)CrossRefGoogle Scholar
  25. 25.
    X.Y. Zhao, Z.B. Yang, G.S. Gai, Y.F. Yang, J. Food Eng. 91(2), 217–222 (2009)CrossRefGoogle Scholar
  26. 26.
    T. Laokuldilok, N. Kanha, LWT - Food Sci. Technol 64(1), 405–411 (2015)CrossRefGoogle Scholar
  27. 27.
    C.A. Nayak, N.K. Rastogi, Dry. Technol. 28(12), 1396–1404 (2010)CrossRefGoogle Scholar
  28. 28.
    D. Geldart, E. Abdullah, A. Verlinden, Powder Technol. 190(1-2), 70–74 (2009)CrossRefGoogle Scholar
  29. 29.
    Z.X. Fang, B. Bhandari, Food Res. Int. 48(2), 478–483 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Damodaran, K.L. Parkin, O.R. Fennema, Fennema’s Food Chemistry (CRC Press, 2007)Google Scholar
  31. 31.
    V.R.N. Telis, N. Martínez–Navarrete, Food Biophys. 4(2), 83–93 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Karmas, M.P. Buera, M. Karel, J. Agric. Food Chem. 40(5), 873–879 (1992)CrossRefGoogle Scholar
  33. 33.
    G.H. Zhao, R.F. Zhang, L.H. Dong, F. Huang, X.J. Tang, Z.C. Wei, M.W. Zhang, LWT – Food Sci. Technol. 87, 450–456 (2018)CrossRefGoogle Scholar
  34. 34.
    R.H. Liu, J. Cereal Sci. 46(3), 207–219 (2007)CrossRefGoogle Scholar
  35. 35.
    P. Zafrilla, J. Morillas, J. Mulero, J. Agric. Food Chem. 51(16), 4694–4700 (2003)CrossRefGoogle Scholar
  36. 36.
    R. Liang, Q. Huang, J. Ma, C.F. Shoemaker, F. Zhong, Food Hydrocoll. 33(2), 225–233 (2013)CrossRefGoogle Scholar
  37. 37.
    A. Luca, B. Cilek, V. Hasirci, S. Sahin, G. Sumnu, Food Bioprocess Technol. 7(1), 204–211 (2014)CrossRefGoogle Scholar
  38. 38.
    R.V. Tonon, C. Brabet, D. Pallet, P. Brat, M.D. Hubinger, Int. J. Food Sci. Technol. 44(10), 1950–1958 (2009)CrossRefGoogle Scholar
  39. 39.
    T.P. Labuza, B. Altunakar, Water activity prediction and moisture sorption isotherms (Blackwell publishing ltd., Iowa, 2007), pp. 109–154Google Scholar
  40. 40.
    S. Kallithaka, M.I. Salacha, I. Tzourou, Food Chem. 113(2), 500–505 (2009)CrossRefGoogle Scholar
  41. 41.
    G.H. Jiang, S.H. Nam, J.B. Eun, J. Food Process. Preserv. 42(2), e13526 (2018)Google Scholar
  42. 42.
    C. Whorton, in Encpasulation and Controlled Release of Food Ingredients, ACS Symposium Series No. 590, ed. by S. J. Risch, G. A. Reineccius. Factors influencing volatile release from encapsulation matrices (American Chemical Society, Washington, DC, 1995), pp. 134–142CrossRefGoogle Scholar
  43. 43.
    Y.X. Li, L.F. Zhang, F.S. Chen, S.J. Lai, H.S. Yang, Food and Bioprocess Technol. 11(7), 1300–1316 (2018)CrossRefGoogle Scholar
  44. 44.
    L.F. Zhang, F.S. Chen, P.L. Zhang, S.J. Lai, H.S. Yang, Food and Bioprocess Technol. 10(2), 349–357 (2017)Google Scholar
  45. 45.
    M. Ma, T. Mu, Carbohydr. Polym. 136, 87–94 (2016)CrossRefGoogle Scholar
  46. 46.
    N.A. Nikonenko, D.K. Buslov, N.I. Sushko, R.G. Zhbankov, Biopolym. 57(4), 257–262 (2000)CrossRefGoogle Scholar
  47. 47.
    A. Zdunek, A. Kozioł, J. Cybulska, M. Lekka, P.M. Pieczywek, Planta. 243(2), 519–529 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Lin, Y. Deng, C.L. Xiao, M.Y. Liu, L.W. Zhu, W. Luo, H.S. Yang, Philipp Agric. Sci. 93, 66–75 (2010)Google Scholar
  49. 49.
    A.M. Olsson, L. Salmen, Carbohydr. Res. 339(4), 813–818 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National UniversityGwangjuSouth Korea

Personalised recommendations