Advertisement

Effect of a Whey Protein Network Formed by Cold Gelation on Starch Digestibility

  • Anaïs LavoisierEmail author
  • José Miguel Aguilera
ORIGINAL ARTICLE
  • 8 Downloads

Abstract

Composite gels of whey protein isolate (WPI) and potato starch (PS) were formed by calcium chloride induced cold gelation to obtain microstructures where native starch granules were encased in the WPI network. Gels were then subjected to heat treatment and PS gelatinized inside the protein network. In vitro starch digestibility was investigated using the INFOGEST protocol to explore if the protein gel was able to protect gelatinized starch granules from enzymatic attack during digestion. This study was focused on the impact of gel particle size and protein concentration on glucose release from the matrix. Mechanical and rheological properties of the composite gels were also evaluated after heat treatment. Glucose release from the matrix was reduced until the intestinal step of the simulated digestion when gels were ground to a particle size of ~1 mm. When gels were cut to a particle size of ~5 mm glucose release was decreased until the end of the test. In this case, at the end of the digestion glucose release was reduced by 15.5 and 20.5% for composite gels with 8 and 10% WPI respectively, whereas no significant reduction was observed for the gel with 6% WPI. Therefore, the effect of the WPI network on starch digestibility depended on particle size and on protein concentration. Mechanical and rheological properties of the gels were related to starch digestibility: PS hydrolysis rate decreased with increasing hardness and elasticity of the gels. This work contributes to a better understanding of starch digestion in soft food matrices.

Keywords

Starch Digestion Whey protein Gel Microstructure Soft food 

Notes

Acknowledgments

This work was supported by CONICYT (the National Commission for Science and Technology, Chile) through FONDECYT Project no. 1150395 and is part of the doctoral thesis of Anaïs Lavoisier also under support of CONICYT doctoral fellowship no. 21160413. Cryo-SEM pictures were taken at the Max Planck Institute for Polymer Research (Mainz, Germany) and the authors thank Thomas Vilgis, Ingo Lieberwirth and Gunnar Glaβer for their assistance.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    World Health Organization, Global Report on Diabetes (Switzerland, Geneva, 2016)Google Scholar
  2. 2.
    International Diabetes Federation, IDF Diabetes Atlas, Eighth (International Diabetes Federation, Brussels, 2017)Google Scholar
  3. 3.
    A. Boles, R. Kandimalla, P.H. Reddy, Biochim. Biophys. Acta Mol. Basis Dis. 1863(5), 1026–1036 (2017)Google Scholar
  4. 4.
    M. Janghorbani, M.R. Salamat, M. Amini, A. Aminorroaya, Diabetes Metab. Syndr. Clin. Res. Rev. 11, S439–S444 (2017)Google Scholar
  5. 5.
    N. Bansal, World J. Diabetes 6(2), 296–303 (2015)Google Scholar
  6. 6.
    J. Singh, A. Dartois, L. Kaur, Trends Food Sci. Technol. 21(4), 168–180 (2010)Google Scholar
  7. 7.
    A. Fardet, C. Hoebler, B. Bouchet, D.J. Gallant, J.L. Barry, Reprod. Nutr. Dev. 27, 133 (1998)Google Scholar
  8. 8.
    W.K. Heneen, K. Brismar, Starch/Staerke 55(12), 546–557 (2003)Google Scholar
  9. 9.
    E.H.J. Kim, J.R. Petrie, L. Motoi, M.P. Morgenstern, K.H. Sutton, S. Mishra, L.D. Simmons, Food Biophys. 3(2), 229–234 (2008)Google Scholar
  10. 10.
    B. Cuq, J. Abecassis, M-H. Morel, in Science Culinaire. Matière, Procécés, Dégustation, ed. by C. Lavelle (Belin, Paris, 2014), pp. 22–50Google Scholar
  11. 11.
    M. Petitot, J. Abecassis, V. Micard, Trends Food Sci. Technol. 20(11-12), 521–532 (2009)Google Scholar
  12. 12.
    W. Zou, M. Sissons, M.J. Gidley, R.G. Gilbert, F.J. Warren, Food Chem. 188, 559–568 (2015)Google Scholar
  13. 13.
    W. Zou, M. Sissons, F.J. Warren, M.J. Gidley, R.G. Gilbert, Carbohydr. Polym. 152, 441–449 (2016)Google Scholar
  14. 14.
    N. Yang, J. Luan, J. Ashton, E. Gorczyca, S. Kasapis, Food Hydrocoll. 42, 244 (2014)Google Scholar
  15. 15.
    N. Yang, J. Ashton, E. Gorczyca, S. Kasapis, Heliyon 3(10), e00421 (2017)Google Scholar
  16. 16.
    N. Bellissimo, T. Akhavan, Am. Soc. Nutr. Adv. Nutr. 6, 3025 (2015)Google Scholar
  17. 17.
    B. Benelam, Nutr. Bull. 34(2), 126–173 (2009)Google Scholar
  18. 18.
    C.L. Campbell, T.B. Wagoner, E.A. Foegeding, Food Struct. 13, 1–12 (2017)Google Scholar
  19. 19.
    C. Chung, B. Degner, D.J. McClements, LWT - Food Sci. Technol. 54, 336 (2013)Google Scholar
  20. 20.
    A. Brodkorb, T. Croguennec, S. Bouhallab, J. J. Kehoein, in Adv. Dairy Chem. Vol. 1B Proteins Appl. Asp., ed. by P. McSweeney, J. A. O’Mahony (Springer, New York, 2016), pp. 155–178Google Scholar
  21. 21.
    A. Abaee, M. Mohammadian, S.M. Jafari, Trends Food Sci. Technol. 70, 69–81 (2017)Google Scholar
  22. 22.
    Q. Guo, N. Bellissimo, D. Rousseau, Food Hydrocoll. 69, 264–272 (2017)Google Scholar
  23. 23.
    Q. Guo, A. Ye, M. Lad, D. Dalgleish, H. Singh, Soft Matter 10(8), 1214–1223 (2014)Google Scholar
  24. 24.
    Q. Guo, A. Ye, M. Lad, D. Dalgleish, H. Singh, Food Hydrocoll. 54, 255–265 (2016)Google Scholar
  25. 25.
    R.U. Almario, W.M. Buchan, D.M. Rocke, S.E. Karakas, BMJ Open Diabetes Res. Care 5(1), e000420 (2017)Google Scholar
  26. 26.
    L.E. Mignone, T. Wu, M. Horowitz, C.K. Rayner, World J. Diabetes 6(14), 1274–1284 (2015)Google Scholar
  27. 27.
    K.N. Englyst, H.N. Englyst, G.J. Hudson, T.J. Cole, J.H. Cummings, Am. J. Clin. Nutr. 69(3), 448–454 (1999)Google Scholar
  28. 28.
    M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrì, R. Boutrou, F.M. Corredig, D. Dupont, F.C. Dufour, L. Egger, M. Golding, L.S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D.J. Mcclements, O. Enard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S.J. Wickham, W. Weitschies, A. Brodkorb, Food Funct. 5(6), 1113–1124 (2014)Google Scholar
  29. 29.
    T. Liu, N. Hamid, K. Kantono, L. Pereira, M.M. Farouk, S.O. Knowles, Food Chem. 213, 108–114 (2016)Google Scholar
  30. 30.
    Ł. Sęczyk, M. Świeca, U. Gawlik-Dziki, Food Funct. 6(11), 3560–3566 (2015)Google Scholar
  31. 31.
    I.Y. Bae, Y. Jun, S. Lee, H.G. Lee, LWT - Food Sci. Technol. 65, 158 (2016)Google Scholar
  32. 32.
    P. Ercan, S.N. El, Food Chem. 205, 163–169 (2016)Google Scholar
  33. 33.
    J.M. Aguilera, P. Baffico, J. Food Sci. 62(5), 1048–1066 (1997)Google Scholar
  34. 34.
    J.M. Aguilera, G.V. Rojas, Food Res. Int. 30(5), 349–357 (1997)Google Scholar
  35. 35.
    J. Chen, N. Khandelwal, Z. Liu, T. Funami, Arch. Oral Biol. 58(3), 293–298 (2013)Google Scholar
  36. 36.
    A. Dartois, J. Singh, L. Kaur, H. Singh, Food Biophys. 5(3), 149–160 (2010)Google Scholar
  37. 37.
    L. Ong, R.R. Dagastine, S.E. Kentish, S.L. Gras, LWT - Food Sci. Technol. 44, 1291 (2011)Google Scholar
  38. 38.
    N. Yang, Y. Liu, J. Ashton, E. Gorczyca, S. Kasapis, Food Chem. 137(1-4), 76–82 (2013)Google Scholar
  39. 39.
    W. Fu, T. Nakamura, Biosci. Biotechnol. Biochem. 81(4), 839–847 (2017)Google Scholar
  40. 40.
    J. Parada, J.M. Aguilera, Food Res. Int. 45(1), 238–243 (2012)Google Scholar
  41. 41.
    L.A. Muñoz, F. Pedreschi, A. Leiva, J.M. Aguilera, J. Food Eng. 152, 65 (2015)Google Scholar
  42. 42.
    J.-Y. Li, A.-I. Yeh, J. Food Eng. 50(3), 141–148 (2001)Google Scholar
  43. 43.
    W.S. Ratnayake, D.S. Jackson, Adv. Food Nutr. Res. 55, 221 (2009)Google Scholar
  44. 44.
    C. Cai, J. Cai, L. Zhao, C. Wei, Food Sci. Biotechnol. 23(1), 15–22 (2014)Google Scholar
  45. 45.
    K. Alvani, X. Qi, R.F. Tester, C.E. Snape, Food Chem. 125(3), 958–965 (2011)Google Scholar
  46. 46.
    K. Alvani, X. Qi, R.F. Tester, Starch/Staerke 64(4), 297–303 (2012)Google Scholar
  47. 47.
    A. Matignon, P. Barey, M. Desprairies, S. Mauduit, J.M. Sieffermann, C. Michon, Food Hydrocoll. 35, 597–605 (2014)Google Scholar
  48. 48.
    M.T. Molina, A. Leiva, P. Bouchon, Food Bioprod. Process. 100, 488–495 (2016)Google Scholar
  49. 49.
    J.W. Woolnough, J.A. Monro, C.S. Brennan, A.R. Bird, Int. J. Food Sci. Technol. 43(12), 2245–2256 (2008)Google Scholar
  50. 50.
    C. Hoebler, A. Karinthi, M.F. Devaux, F. Guillon, D.J. Gallant, B. Bouchet, C. Melegari, J.L. Barry, Br. J. Nutr. 80(05), 429 (1998)Google Scholar
  51. 51.
    G.M. Bornhorst, R.P. Singh, Food Biophys. 8(1), 50–59 (2013)Google Scholar
  52. 52.
    S. Jourdren, M. Panouille, A. Saint-Eve, I. Déléris, D. Forest, P. Lejeune, I. Souchon, Food Funct. 7(3), 1446–1457 (2016)Google Scholar
  53. 53.
    M. Tamura, Y. Okazaki, C. Kumagai, Y. Ogawa, Food Res. Int. 94, 6–12 (2017)Google Scholar
  54. 54.
    J. Oñate Narciso, C. Brennan, Starch-Stärke 70(9-10), 1700315 (2018)Google Scholar
  55. 55.
    N. López-Barón, Y. Gu, T. Vasanthan, R. Hoover, Food Hydrocoll. 69, 19–27 (2017)Google Scholar
  56. 56.
    X. Chen, X.W. He, B. Zhang, X. Fu, J.l. Jane, Q. Huang, Int. J. Biol. Macromol. 104, 481 (2017)Google Scholar
  57. 57.
    Z.H. Lu, E. Donner, R.Y. Yada, Q. Liu, Carbohydr. Polym. 154, 214–222 (2016)Google Scholar
  58. 58.
    J.M. Aguilera, Crit. Rev. Food Sci. Nutr. 10, 1–18 (2018)Google Scholar
  59. 59.
    V. Ranawana, J.A. Monro, S. Mishra, C.J.K. Henry, Nutr. Res. 30, 246 (2010)Google Scholar
  60. 60.
    G. Mandalari, Z. Merali, P. Ryden, S. Chessa, C. Bisignano, D. Barreca, E. Bellocco, G. Laganà, R.M. Faulks, K.W. Waldron, Eur. J. Nutr. 57(1), 319–325 (2018)Google Scholar
  61. 61.
    A.M. Farooq, C. Li, S. Chen, X. Fu, B. Zhang, Q. Huang, Int. J. Biol. Macromol. 118, 160–167 (2018)Google Scholar
  62. 62.
    K. Mahasukhonthachat, P.A. Sopade, M.J. Gidley, J. Food Eng. 96, 18 (2010)Google Scholar
  63. 63.
    G.J.S. Al-Rabadi, R.G. Gilbert, M.J. Gidley, J. Cereal Sci. 50(2), 198–204 (2009)Google Scholar
  64. 64.
    K.W. Heaton, S.N. Marcus, P.M. Emmett, C.H. Bolton, Am. J. Clin. Nutr. 47(4), 675–682 (1988)Google Scholar
  65. 65.
    G.T. Nguyen, M.J. Gidley, P.A. Sopade, LWT - Food Sci. Technol. 63, 541 (2015)Google Scholar
  66. 66.
    T. Tinus, M. Damour, V. Van Riel, P.A. Sopade, J. Food Eng. 113, 254 (2012)Google Scholar
  67. 67.
    G. Chen, P. Sopade, Int. J. Food Sci. Technol. 48(1), 150–156 (2013)Google Scholar
  68. 68.
    P. Colonna, J.L. Barry, D. Cloarec, F. Bornet, S. Gouilloud, J.P. Galmiche, J. Cereal Sci. 11(1), 59–70 (1990)Google Scholar
  69. 69.
    Y. Granfeldt, I. Björck, J. Cereal Sci. 14(1), 47–61 (1991)Google Scholar
  70. 70.
    V. Ranawana, C.J.K. Henry, M. Pratt, Nutr. Res. 30, 382 (2010)Google Scholar
  71. 71.
    S.A. Alam, S. Pentikäinen, J. Närväinen, U. Holopainen-Mantila, K. Poutanen, N. Sozer, Food Res. Int. 96, 1–11 (2017)Google Scholar
  72. 72.
    E. Nordlund, K. Katina, H. Mykkänen, K. Poutanen, Foods 5(4), 24 (2016)Google Scholar
  73. 73.
    Q. Luo, R.M. Boom, A.E.M. Janssen, LWT - Food Sci. Technol. 63, 161 (2015)Google Scholar
  74. 74.
    M. Tokita, Gels 2(2), 17 (2016)Google Scholar
  75. 75.
    M.A. Rao, Rheology of Fluids and Semisolid Foods Principles and Applications, 2nd edn. (Springer, Geneva, NY, 2007)Google Scholar
  76. 76.
    A.C. Alting, R.J. Hamer, C.G. De Kruif, R.W. Visschers, J. Agric. Food Chem. 51(10), 3150–3156 (2003)Google Scholar
  77. 77.
    A. Macierzanka, F. Böttger, L. Lansonneur, R. Groizard, A.S. Jean, N.M. Rigby, K. Cross, N. Wellner, A.R. MacKie, Food Chem. 134(4), 2156–2163 (2012)Google Scholar
  78. 78.
    M. Opazo-Navarrete, M.D. Altenburg, R.M. Boom, A.E.M. Janssen, Food Biophys. 13(2), 124–138 (2018)Google Scholar
  79. 79.
    H. Singh, A. Ye, M.J. Ferrua, Curr. Opin. Food Sci. 3, 85–93 (2015)Google Scholar
  80. 80.
    Q. Guo, A. Ye, M. Lad, D. Dalgleish, H. Singh, Food Hydrocoll. 33(2), 215–224 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Bioprocess EngineeringPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations