Advertisement

Physicochemical, Thermal and Rheological Properties of Native and Oxidized Starch from Corn Landraces and Hybrids

  • Juan Carlos Bustillos-Rodríguez
  • Magali Ordóñez-García
  • Juan Manuel Tirado-Gallegos
  • Paul Baruk Zamudio-Flores
  • José de Jesús Ornelas-Paz
  • Carlos Horacio Acosta-Muñiz
  • Gabriel Gallegos-Morales
  • David Roberto Sepúlveda-Ahumada
  • Miguel Ángel Salas-Marina
  • David Ignacio Berlanga-Reyes
  • Alejandro Aparicio-Saguilán
  • Claudio Rios-VelascoEmail author
ORIGINAL ARTICLE
  • 37 Downloads

Abstract

Native starch was isolated from three corn landraces and a hybrid variety. The starches were oxidized with several concentrations of NaOCl (0.8, 2 and 5% w/w active chlorine). The physicochemical and functional properties of oxidized starches were compared with those of native starches of the same source. The oxidation treatment increased the content of carboxyl and carbonyl content in the starches confirming that NaOCl effectively oxidized the polysaccharides. The oxidation treatment decreased the content of non-starch components and increased the whiteness (L* values of tristimulus color) of starches. The oxidation also increased the water retention capacity of starches. The values of the thermal and rheological properties of starches decreased as the oxidation intensity increased. The high number of carbonyl and carboxyl groups in oxidized starches favored starch depolymerization and increased the affinity of starch for water. The crystallinity of starches was not affected by oxidation, where the most intense diffraction peaks in both native and oxidized corn starches were observed at 2θ = 15, 17, 18 and 23°. The hardness of starch gels decreased with oxidation.

Keywords

Zea mays Polysaccharides Chemical modification Texture Thickener Gelling agent 

Notes

Acknowledgments

The author (J. C. Bustillos Rodríguez) thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT-México) for the scholarship provided during his PhD study in the Centro de Investigación en Alimentación y Desarrollo A.C. This work was supported by the Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA-COFUPRO, México) [CH1600001442].

References

  1. 1.
    K.O. Adebowale, T.A. Afolabi, B.I. Olu-Owolabi, Carbohydr. Polym. 65, 93–101 (2006)CrossRefGoogle Scholar
  2. 2.
    A.M. Amini, S.M.A. Razavi, S.A. Mortazavi, Carbohydr. Polym. 122, 282–292 (2015)CrossRefGoogle Scholar
  3. 3.
    R.M. Amir, F.M. Anjum, M.I. Khan, M.R. Khan, I. Pasha, M. Nadeem, J. Food Sci. Technol., 1–6 (2013)Google Scholar
  4. 4.
    AOAC. (2002)Google Scholar
  5. 5.
    Argüello-García E, Solorza-Feria J, Rendón-Villalobos JR, Rodríguez-González F, Jiménez-Pérez A & Flores-Huicochea E, Int J Polym Sci 2014. (2014)Google Scholar
  6. 6.
    Ashri A, Yusof MSM, Jamil MS, Abdullah A, Yusoff SFM, Arip MNM & Lazim AM, 26: 652–658. (2014)Google Scholar
  7. 7.
    K. Autio, T. Suortti, A. Hamunen, K. Poutanen, Carbohydr. Polym. 29, 155–161 (1996)CrossRefGoogle Scholar
  8. 8.
    L.A. Bello-Pérez, F.J. García-Suárez, G. Méndez-Montealvo, J.R. Oliveira do Nascimento, F.M. Lajolo, B.R. Cordenunsi, Starch-Stärke 58, 283–291 (2006)CrossRefGoogle Scholar
  9. 9.
    Bothast R & Schlicher M, 67: 19–25. (2005)Google Scholar
  10. 10.
    S. Chattopadhyay, R.S. Singhal, P.R. Kulkarni, Carbohydr. Polym. 34, 203–212 (1997)CrossRefGoogle Scholar
  11. 11.
    C.E. Chávez-Murillo, Y.J. Wang, L.A. Bello-Pérez, Starch-Stärke 60, 634–645 (2008)CrossRefGoogle Scholar
  12. 12.
    Contreras-Gallegos E, Dominguez-Pacheco FA, Hernandez-Aguilar C, Carballo-Carballo A, Cruz-Orea A, Thoen J & Glorieux C, 10: 19–24. (2015)Google Scholar
  13. 13.
    L. Dokić, T. Dapčević, V. Krstonošić, P. Dokić, M. Hadnađev, Food Hydrocoll. 24, 172–177 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Dutta, S.K. Paul, D. Kalita, C.L. Mahanta, Food Chem. 128, 284–291 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Gao, T. Vasanthan, R. Hoover, J. Li, Starch-Stärke 64, 313–325 (2012)CrossRefGoogle Scholar
  16. 16.
    Y.V. García-Tejeda, P.B. Zamudio-Flores, L.A. Bello-Pérez, C.A. Romero-Bastida, J. Solorza-Feria, Rev. Iberoam. Polim. 12, 125–135 (2011)Google Scholar
  17. 17.
    L.H. Garrido, E. Schnitzler, Zortéa MEB, de Souza Rocha T & Demiate IM. J. Food Sci. Technol. 51, 2640–2647 (2014)CrossRefGoogle Scholar
  18. 18.
    P.S. Hornung, S.R.S. Lazzarotto, M.B. Bellettini, M. Lazzarotto, T. Beta, R.H. Ribani, E. Schnitzler, Starch-Stärke (In press)Google Scholar
  19. 19.
    M.R. Jacobson, M. Obanni, J.N. Bemiller, Food Chem. 74, 511–518 (1997)Google Scholar
  20. 20.
    R. Jan, D. Saxena, S. Singh, LWT Food Sci. Technol. 66, 267–274 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Kaur, G.K. Bhullar, Int. J. Food Prop. 19, 605–617 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Kong, S. Kasapis, J. Bao, H. Corke, J. Sci. Food Agric. 92, 1800–1807 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Kuakpetoon, Y.J. Wang, Starch-Stärke 53, 211–218 (2001)CrossRefGoogle Scholar
  24. 24.
    D. Kuakpetoon, Y.-J. Wang, Carbohydr. Res. 341, 1896–1915 (2006)CrossRefGoogle Scholar
  25. 25.
    O. Lawal, K. Adebowale, B. Ogunsanwo, L. Barba, N. Ilo, Int. J. Biol. Macromol. 35, 71–79 (2005)CrossRefGoogle Scholar
  26. 26.
    Li J-Y & Yeh A-I, 50: 141–148. (2001)Google Scholar
  27. 27.
    J. Liu, B. Wang, L. Lin, J. Zhang, W. Liu, J. Xie, Y. Ding, Food Hydrocoll. 36, 45–52 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Majzoobi, Z. Kaveh, A. Farahnaky, C.L. Blanchard, Starch-Stärke 67, 303–310 (2015)CrossRefGoogle Scholar
  29. 29.
    Masina N, Choonara YE, Kumar P, du Toit LC, Govender M, Indermun S & Pillay V, 157: 1226–1236. (2017)Google Scholar
  30. 30.
    Mendes J, Paschoalin R, Carmona V, Neto ARS, Marques A, Marconcini J, Mattoso L, Medeiros E & Oliveira J, 137: 452–458. (2016)Google Scholar
  31. 31.
    O.A. Odeku, Starch-Stärke 65, 89–106 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Olayinka, O. Olayinka, B. Olu-Owolabi, K. Adebowale, J. Food Sci. Technol. 52, 8364–8370 (2015)CrossRefGoogle Scholar
  33. 33.
    Ort DR & Long SP, 344: 484–485. (2014)Google Scholar
  34. 34.
    L. Passauer, H. Bender, S. Fischer, Carbohydr. Polym. 82, 809–814 (2010)CrossRefGoogle Scholar
  35. 35.
    I. Rashid, M.M. Al Omari, A.A. Badwan, Starch-Stärke 65, 552–571 (2013)CrossRefGoogle Scholar
  36. 36.
    A.M. Rincón, L.B. Rached, L.E. Aragoza, F. Padilla, Arch. Latinoam. Nutr. 57, 287 (2007)Google Scholar
  37. 37.
    N. Rincón-Londoño, L.J. Vega-Rojas, M. Contreras-Padilla, A. Acosta-Osorio, M.E. Rodríguez-García, J. Int, Biol Macromol 91, 106–114 (2016)CrossRefGoogle Scholar
  38. 38.
    G.G. Rondán-Sanabria, F. Finardi-Filho, Food Chem. 114, 492–498 (2009)CrossRefGoogle Scholar
  39. 39.
    M. Sahnoun, N. Ismail, R. Kammoun, J. Food Sci. Technol. 53, 481–490 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Sánchez-Rivera, F. García-Suárez, M.V. Del Valle, F. Gutierrez-Meraz, L. Bello-Pérez, Carbohydr. Polym. 62, 50–56 (2005)CrossRefGoogle Scholar
  41. 41.
    K.S. Sandhu, N. Singh, Food Chem. 101, 1499–1507 (2007)CrossRefGoogle Scholar
  42. 42.
    K.S. Sandhu, N. Singh, M. Kaur, J. Food Eng. 64, 119–127 (2004)CrossRefGoogle Scholar
  43. 43.
    K.S. Sandhu, M. Kaur, N. Singh, S.-T. Lim, LWT Food Sci. Technol. 41, 1000–1010 (2008)CrossRefGoogle Scholar
  44. 44.
    K. Sangseethong, N. Termvejsayanon, K. Sriroth, Carbohydr. Polym. 82, 446–453 (2010)CrossRefGoogle Scholar
  45. 45.
    SAS I (2002) SAS User’s Guide. p.^pp. SAS Institute, Cary, NCGoogle Scholar
  46. 46.
    Shrestha J, Book Growth and productivity of winter maize (Zea mays L.) under different levels of nitrogen and plant population, 1st, (Universal, Florida, 2015) p.^pp.Google Scholar
  47. 47.
    Singh J, Kaur L & McCarthy O, 21: 1–22. (2007)Google Scholar
  48. 48.
    T. Sugama, J. Mater. Sci. 32, 3995–4003 (1997)CrossRefGoogle Scholar
  49. 49.
    S. Sukhija, S. Singh, C.S. Riar, Food Hydrocoll. 55, 56–64 (2016)CrossRefGoogle Scholar
  50. 50.
    K. Trithavisup, S. Charoenrein, Int. J. Food Prop. 19, 2074–2086 (2016)CrossRefGoogle Scholar
  51. 51.
    R. Utrilla-Coello, C. Hernández-Jaimes, H. Carrillo-Navas, F. González, E. Rodríguez, L.A. Bello-Perez, E. Vernon-Carter, J. Alvarez-Ramirez, Carbohydr. Polym. 103, 596–602 (2014)CrossRefGoogle Scholar
  52. 52.
    L. Wang, Y.-J. Wang, Cereal Chem. 78, 690–692 (2001)CrossRefGoogle Scholar
  53. 53.
    Y.-J. Wang, L. Wang, Carbohydr. Polym. 52, 207–217 (2003)CrossRefGoogle Scholar
  54. 54.
    S. Wang, C. Li, L. Copeland, Q. Niu, S. Wang, Compr. Rev. Food Sci. Food Saf. 14, 568–585 (2015)CrossRefGoogle Scholar
  55. 55.
    S. Yu, Y. Zhang, H. Li, Y. Wang, C. Gong, X. Liu, X. Zheng, N.K. Kopparapu, Starch-Stärke 67, 989–1001 (2015)CrossRefGoogle Scholar
  56. 56.
    P.B. Zamudio-Flores, A. Vargas-Torres, F. Gutiérrez-Meraz, L.A. Bello-Pérez, Agrociencia-Mexico 44, 283–295 (2010)Google Scholar
  57. 57.
    J. Zeng, G. Li, H. Gao, Z. Ru, Molecules 16, 10570–10591 (2011)CrossRefGoogle Scholar
  58. 58.
    Y.-R. Zhang, X.-L. Wang, G.-M. Zhao, Y.-Z. Wang, Carbohydr. Polym. 87, 2554–2562 (2012)CrossRefGoogle Scholar
  59. 59.
    F. Zhou, Q. Liu, H. Zhang, Q. Chen, B. Kong, Int. J. Biol. Macromol. 84, 410–417 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Juan Carlos Bustillos-Rodríguez
    • 1
  • Magali Ordóñez-García
    • 1
  • Juan Manuel Tirado-Gallegos
    • 1
  • Paul Baruk Zamudio-Flores
    • 1
  • José de Jesús Ornelas-Paz
    • 1
  • Carlos Horacio Acosta-Muñiz
    • 1
  • Gabriel Gallegos-Morales
    • 2
  • David Roberto Sepúlveda-Ahumada
    • 1
  • Miguel Ángel Salas-Marina
    • 3
  • David Ignacio Berlanga-Reyes
    • 1
  • Alejandro Aparicio-Saguilán
    • 4
  • Claudio Rios-Velasco
    • 1
    Email author
  1. 1.Centro de Investigación en Alimentación y Desarrollo, A.CChihuahuaMexico
  2. 2.Departamento de Parasitología AgrícolaUniversidad Autónoma Agraria Antonio NarroBuenavistaMexico
  3. 3.Facultad de Ingeniería, Unidad Académica VillacorzoUniversidad de Ciencias y Artes de ChiapasMonterreyMexico
  4. 4.Instituto de BiotecnologíaUniversidad del PapaloapanOaxacaMexico

Personalised recommendations