Gellan Hydrogels: Preparation, Rheological Characterization and Application in Encapsulation of Curcumin

  • Emmanuel N. Ambebila
  • Esther Santamaría
  • Alicia MaestroEmail author
  • José M. Gutiérrez
  • Carmen González


Hydrogels can be used to protect some labile active principles, as polyphenol-rich substances, that can be added to foods to prepare functional ones. Rheological properties of gels formed through the addition of calcium chloride to gellan solutions were studied. It can be concluded that preparation variables and not only formulation ones are determinant in rheological properties of the resulting gels, as they are not in an equilibrium state but they are continuously evolving during hours to stronger gels corresponding to a denser network. It could be related to the fact that local non-gelled domains are formed surrounded by a shell of gel where Ca2+ ions take some time to arrive. A minimum Ca2+/gellan ratio (CG) is required to reach the gel point (GP), determined as the CG where the ratio loss modulus/elastic modulus (G”/G’) collapse for all frequencies. Calcium-induced external gelation of oil-in-water (O/W) emulsions where a curcumin-in-oil solution is the disperse phase and a watery solution of gellan is the continuous phase was used to prepare beads were curcumin is entrapped in order to prevent its degradation. Smaller droplet-sized emulsions were obtained with higher gellan concentrations, since a higher viscosity of the continuous phase allowed to reach the critical Capillary number CaC at lower radius of droplets. An encapsulation yield around 90% was reached for gellan concentrations of 1% w/v, and the resulting encapsulated curcumin presented around 6 times slower light degradation than free curcumin-in-oil solutions.


Gellan Calcium Rheology Curcumin Beads Hydrocolloid Encapsulation 



Thanks to the European Commission for the scholarship funded within the Erasmus+ KA1 Programme, ref. 2013-0241 - Erasmus Mundus Joint Master Degree in Chemical Innovation and Regulation, and to the Ministry of Science and Innovation of Spain (Project CTQ2016-80645-R) with Feder funds.


  1. 1.
    M. El Soda, L. Pannell, N. Olson, J. Microencapsul. 6(3), 319–326 (1989)CrossRefGoogle Scholar
  2. 2.
    G. Sworn, G.R. Sanderson, W. Gibson, Food Hydrocoll. 9(4), 265–271 (1995)CrossRefGoogle Scholar
  3. 3.
    D.F. Coutinho, S.V. Sant, H. Shin, J.T. Oliveira, M.E. Gomes, Biomaterials 31(29), 7494–7502 (2010)CrossRefGoogle Scholar
  4. 4.
    K. Ako, Carbohydr. Polym. 115, 408–414 (2015)CrossRefGoogle Scholar
  5. 5.
    P. Tricardi, C. Cencetti, R. Ria, F. Alhaique, T. Coviello, Molecules 14(9), 3376–3391 (2009)CrossRefGoogle Scholar
  6. 6.
    C.T. Schwall, I.A. Banerjee, Materials 2(2), 577–612 (2009)CrossRefGoogle Scholar
  7. 7.
    F.G. Prezotti, B.S. Cury, R.C. Evangelista, Carbohydr. Polym. 113, 286–295 (2014)CrossRefGoogle Scholar
  8. 8.
    E.M. Ahmed, J. Adv. Res. 6(2), 105–121 (2015)CrossRefGoogle Scholar
  9. 9.
    L.S. Liu, J. Kost, F. Yan, R.C. Spiro, Polymers 4(2), 997–1011 (2012)CrossRefGoogle Scholar
  10. 10.
    E.R. Morris, K. Nishinari, M. Rinaudo, Food Hydrocoll. 28(2), 373–411 (2012)CrossRefGoogle Scholar
  11. 11.
    B. Karthika, J.S. Vishalakshi, Der Pharma Chemica 5, 185–192 (2013)Google Scholar
  12. 12.
    L. Brannon-Peppas, R.S. Harland, J. Control. Release 17(3), 297–298 (1991)CrossRefGoogle Scholar
  13. 13.
    S. Ishihara, M. Nakauma, T. Funami, S. Odake, K. Nishinari, Food Hydrocoll. 25(5), 1016–1024 (2011)CrossRefGoogle Scholar
  14. 14.
    Deglución: K. Nishinari, Food Sci. Technol. Res. 15, 99–106 (2009)CrossRefGoogle Scholar
  15. 15.
    N. Sahiner, Prog. Polym. Sci. 38(9), 1329–1356 (2013)CrossRefGoogle Scholar
  16. 16.
    S.J. Pérez-Campos, N. Chavarría-Hernández, A. Tecante, M. Ramírez-Gil, Food Hydrocoll. 28(2), 291–300 (2012)CrossRefGoogle Scholar
  17. 17.
    V.M.F. Gonçalves, A. Reis, M.R.M. Domingues, J.A. Lopes-da-Silva, A.M. Fialho, L.M. Moreira, I. Sá-Correia, M.A. Coimbra, Carbohydr. Polym. 77(1), 10–19 (2009)CrossRefGoogle Scholar
  18. 18.
    G.R. Bardajee, A. Pourjavadi, S. Ghavami, R. Soleyman, F. Jafarpour, J. Photochem, Photobiol. B 102(232–240) (2011)Google Scholar
  19. 19.
    T. Osmałek, A. Froelich, S. Tasarek, Int. J. Pharm. 466(1-2), 328–340 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Nitta, R. Takahashi, K. Nishinari, Biomolecules 11(1), 187–191 (2009)Google Scholar
  21. 21.
    E. Miyoshi, T. Takaya, K. Nishinari, Carbohydr. Polym. 30(2), 109–119 (1996)CrossRefGoogle Scholar
  22. 22.
    F. Yang, S. Xia, C. Tan, X. Zhang, Eur. Food Res. Technol. 237(4), 467–479 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Song, Z. Wang, Y. Qian, L. Zhang, E. Luo, J. Agric. Food Chem. 60(17), 4388–4395 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Tan, J. Xie, X. Zhang, J. Cai, S. Xia, Food Hydrocoll. 57, 236–245 (2016)CrossRefGoogle Scholar
  25. 25.
    T.P. Sari, B. Mann, R. Kumar, R.R.B. Singh, R. Sharma, M. Bhardwaj, S. Athira, Food Hydrocoll. 43, 540–546 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Chen, L.Q. Zou, J. Niu, W. Liu, S.F. Peng, C.M. Liu, Molecules 20, 293–311 (2015)Google Scholar
  27. 27.
    A.T.B. Nguyen, P. Winckler, P. Loison, Y. Wache, O. Chambin, Colloids Surf., B 121, 290–298 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Lupo, A. Maestro, M. Porras, J.M. Gutiérrez, C. González, Food Hydrocoll. 38, 56–65 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Dogra, R. Choudhary, P. Kohli, J.D. Haddock, S. Makwana, B. Horev, Y. Vinokur, S. Droby, V. Rodov, J. Agric. Food Chem. 63(9), 2557–2565 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Hu, Y. Jia, F. Niu, Z. Jia, X. Yang, K. Jiao, J. Agric. Food Chem. 60(29), 7137–7141 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Munin, F. Edwards-Lévy, Pharmaceutics 3(4), 793–829 (2011)CrossRefGoogle Scholar
  32. 32.
    D. Patra, C. Barakat, Spectrochim. Acta, Part A 79(5), 1034–1041 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Shi, L. Yao, Y. Mao, Y. Ming, G. Ouyang, Cell Biol. Int. Rep. 30(3), 221–226 (2006)CrossRefGoogle Scholar
  34. 34.
    G.R.B. Irving, A. Karmokar, D.P. Berry, K. Brown, W.P. Stewart, Best Pract. Res. Clin. Gastroenterol. 25(4-5), 519–534 (2011)CrossRefGoogle Scholar
  35. 35.
    V.H. Ferreira, A. Nazli, S.E. Dizzell, K. Mueller, C. Kaushic, PLoS One 10, 1–19 (2015)Google Scholar
  36. 36.
    Y. Wang, Z. Lu, F. Lv, X. Bie, Eur. Food Res. Technol. 229(3), 391–396 (2009)CrossRefGoogle Scholar
  37. 37.
    C. Wang, Z. Liu, G. Xu, B. Yin, P. Yao, Food Hydrocoll. 61, 11–19 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Fan, J. Yi, Y. Zhang, W. Yokoyama, Food Chem. 239, 1210–1218 (2018)CrossRefGoogle Scholar
  39. 39.
    S. Bisht, A. Maitra, Curr. Drug Discov. Technol. 6(3), 192–199 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Vajpayee, S. Fartya, A.P. Singh, S.K. Jha, J. Pharm, Res. Opinion 4, 108–112 (2011)Google Scholar
  41. 41.
    B.N. Singh, L.D. Trombetta, K.H. Kim, Pharm. Dev. Technol. 9(4), 399–407 (2004)CrossRefGoogle Scholar
  42. 42.
    K. Nakagawa, N. Sowasod, T. Charinpanitkul, A. Soottitantawat, W. Tanthapanichakoon, Procedia Food Sci. 1, 1973–1979 (2011)CrossRefGoogle Scholar
  43. 43.
    H.M. Shewan, J.R. Stokes, J. Food Eng. 118, 781–792 (2013)CrossRefGoogle Scholar
  44. 44.
    E. Rudé, J. Llorens, J. Non-Cryst. Solids 352(21-22), 2220–2225 (2006)CrossRefGoogle Scholar
  45. 45.
    H.H. Winter, F. Chambon, J. Rheol. 30(2), 367–382 (1986)CrossRefGoogle Scholar
  46. 46.
    F. Chambon, H.H. Winter, J. Rheol. 31(8), 683–697 (1987)CrossRefGoogle Scholar
  47. 47.
    A. May, K. Aramaki, J.M. Gutiérrez, Langmuir 27(6), 2286–2298 (2011)CrossRefGoogle Scholar
  48. 48.
    M.M. Alam, Y. Sugiyama, K. Watanabe, K. Aramaki, J. Colloid Interface Sci. 341(2), 267–272 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Engineering Department, Faculty of ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations