The Formation and Disaggregation of Soy Protein Isolate Fibril: Effects of pH

  • Yangling Wan
  • Shuntang GuoEmail author


To identify the effects of charged states on the formation and disaggregation of soy protein isolate (SPI) fibril, we studied the thermal aggregation behaviors of the constituent peptides of SPI fibril (CPSF) at various pH values (2–10) and investigated the structural changes of SPI fibril with increasing pH (2–11). Results showed that CPSF would assemble into diverse shapes at different pH values, among which the aggregates contained multiple β-sheet structures at pH less than 6, but these β-sheets were stacked to form fibrils only at pH 2. The damages from the increased pH to SPI fibril structure could be roughly divided into two stages, as follows: when pH was less than or equal to 6, the morphology of fibrils changed markedly due to electrostatic neutralization; at pH larger than 6, the fibrils suffered great losses in β-sheet, causing its structure to disintegrate rapidly. This study could provide theoretical reference to improve the pH stability of SPI fibril from the aspects of preparation and structural protection of the fibril.


Soy protein isolate fibril pH β-Sheet Morphology Disaggregation Fibrillation 



The authors acknowledge the financial support provided by the Natural Science Foundation of China (NSFC, No. 31471582).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11483_2019_9567_MOESM1_ESM.docx (258 kb)
ESM 1 (DOCX 258 kb)
11483_2019_9567_MOESM2_ESM.docx (703 kb)
ESM 2 (DOCX 702 kb)
11483_2019_9567_MOESM3_ESM.docx (826 kb)
ESM 3 (DOCX 826 kb)


  1. 1.
    C. Akkermans, A.J. Van der Goot, P. Venema, E. Van der Linden, R.M. Boom, Int. Dairy J. 18, 10 (2008)CrossRefGoogle Scholar
  2. 2.
    C.M. Dobson, Trends Biochem. Sci. 24, 9 (1999)CrossRefGoogle Scholar
  3. 3.
    S.L. Shammas, T.P. Knowles, A.J. Baldwin, C.E. Macphee, M.E. Welland, C.M. Dobson, G.L. Devlin, Biophys. J. 100, 11 (2011)CrossRefGoogle Scholar
  4. 4.
    A. KroesNijboer, P. Venema, E. van der Linden, Food Funct. 3, 3 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Liu, C.H. Tang, Food Res. Int. 51, 2 (2013)Google Scholar
  6. 6.
    C. Akkermans, A.J. Van der Goot, P. Venema, H. Gruppen, J.M. Vereijken, E. Van der Linden, R.M. Boom, J Argric Food Chem 55, 24 (2007)Google Scholar
  7. 7.
    J.M. Wang, X.Q. Yang, S.W. Yin, D.B. Yuan, N. Xia, J.R. Qi, J. Agric. Food Chem. 59, 20 (2011)Google Scholar
  8. 8.
    C.H. Tang, S.S. Wang, Q. Huang, Food Res. Int. 46, 1 (2012)CrossRefGoogle Scholar
  9. 9.
    R.A. Mantovani, J. Fattori, M. Michelon, R.L. Cunha, Food Hydrocolloid 60 (2016)Google Scholar
  10. 10.
    S.M. Loveday, X.L. Wang, M.A. Rao, S.G. Anema, H. Singh, Food Hydrocolloid 27, 1 (2012)CrossRefGoogle Scholar
  11. 11.
    O.G. Jones, R. Mezzenga, Soft Matter 8, 4 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Tjernberg, W. Hosia, N. Bark, J. Thyberg, J. Johansson, J. Biol. Chem. 277, 45 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Owczarz, T. Casalini, A.C. Motta, M. Morbidelli, P. Arosio, Biomacromolecules 16, 12 (2015)CrossRefGoogle Scholar
  14. 14.
    V. Vetri, C. Canale, A. Relini, F. Librizzi, V. Militello, A. Gliozzi, M. Leone, Biophys. Chem. 125, 1 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Akkermans, P. Venema, A.J. van der Goot, R.M. Boom, E. van der Linden, Food Biophys 3, 4 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Lassé, D. Ulluwishewa, J. Healy, D. Thompson, A. Miller, N. Roy, K. Chitcholtan, J.A. Gerrard, Food Chem 192 (2016)Google Scholar
  17. 17.
    A. Kroes-Nijboer, H. Sawalha, P. Venema, A. Bot, E. Flöter, R. den Adel, W.G. Bouwman, E. van der Linden, Faraday Discuss. 158, 35 (2012)Google Scholar
  18. 18.
    Y. Wan, J. Liu, S. Guo, Food Chem 245 (2018)Google Scholar
  19. 19.
    M.R.H. Krebs, E.H.C. Bromley, A.M. Donald, J. Struct. Biol. 149, 1 (2005)CrossRefGoogle Scholar
  20. 20.
    O.G. Jones, S. Handschin, J. Adamcik, L. Harnau, S. Bolisetty, R. Mezzenga, Biomacromolecules 12, 8 (2011)CrossRefGoogle Scholar
  21. 21.
    C. Akkermans, P. Venema, A.J. van der Goot, H. Gruppen, E.J. Bakx, R.M. Boom, E. van der Linden, Biomacromolecules 9, 5 (2008)CrossRefGoogle Scholar
  22. 22.
    P. Picotti, G. De Franceschi, E. Frare, B. Spolaore, M. Zambonin, F. Chiti, P. Polverino de Laureto, A. Fontana, J. Mol. Biol. 367, 5 (2007)Google Scholar
  23. 23.
    C.M. Dobson, Biophys. J. 100, 11 (2011)CrossRefGoogle Scholar
  24. 24.
    V. Vetri, V. Militello, Biophys. Chem. 113, 1 (2005)CrossRefGoogle Scholar
  25. 25.
    J.E. Straub, D. Thirumalai, Annu. Rev. Phys. Chem. 62, 62 (2011)CrossRefGoogle Scholar
  26. 26.
    W. Xi, W. Li, W. Wang, J. Phys. Chem. B 116, 25 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Bousset, F. Briki, J. Doucet, R. Melki, J. Struct. Biol. 141, 2 (2003)CrossRefGoogle Scholar
  28. 28.
    W.H. Xi, W.F. Li, W. Wang, Chin. Phys. Lett. 29, 8 (2012)Google Scholar
  29. 29.
    E.H. Bromley, M.R. Krebs, A.M. Donald, Faraday Discuss. 128, 2 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations