Food Biophysics

, Volume 14, Issue 1, pp 69–79 | Cite as

Thermal Versus High Hydrostatic Pressure Treatments on Calcium-added Soybean Proteins. Protein Solubility, Colloidal Stability and Cold-set Gelation

  • Lucía Piccini
  • Adriana Scilingo
  • Francisco SperoniEmail author


The effects of thermal treatment (TT) and high hydrostatic pressure treatment (HHPT) on calcium-added soybean protein 1% (w/w) aqueous dispersions at pH 7.0 were compared. High hydrostatic pressure, but not thermal treatment, improved protein solubility and colloidal stability. Despite the fact that the glycinin solubility is more affected by calcium than that of β-conglycinin, glycinin could remain in dispersion in the presence of calcium when denatured by HHPT (calcium added before or after treatment), but not when denatured by TT or without denaturing treatment. Thus, polypeptide composition of soluble aggregates depended on type of treatment. Colloidal stability and molecular weight of soluble aggregates depended on the order of application of calcium and denaturing treatment: when calcium was present during either HHPT or TT, the dispersions had higher stability and higher proportion of soluble aggregates with high molecular weight than when calcium was added after treatments. After freeze drying and re-dispersing at higher protein content (10% w/w) calcium-added dispersions subjected to HHPT formed cold-set gels that were transparent and exhibited excellent water holding capacity. Our results provide the basis for the development of ready-to-use functional ingredients.


Soybean proteins Calcium addition Functional foods High hydrostatic pressure Cold-set gelation of reconstituted dispersions 



The authors wish to thank Claudio Sanow from the Instituto de Tecnología de Alimentos, INTA, for his kind assistance during the use of the HHPT equipment.


  1. 1.
    N.K. Rastogi, K.S.M.S. Raghavarao, V.M. Balasubramaniam, K. Niranjan, D. Knorr, Crit. Rev. Food Sci. Nutr. 47, 69 (2007)CrossRefGoogle Scholar
  2. 2.
    B.B. Boonyaratanakornkit, C.B. Park, D.S. Clark, Biochim. Biophys. Acta 1595, 235 (2002)CrossRefGoogle Scholar
  3. 3.
    E. Molina, A. Papadopoulou, D.A. Ledward, Food Hydrocoll. 15, 263 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Lakshmanan, M. de Lamballerie, S. Jung, Food Eng Phys Prop 71, 384 (2006)Google Scholar
  5. 5.
    K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. 39, 301 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Chen, M. Zhao, F. Niepceron, T. Nicolai, C. Chassenieux, Food Hydrocoll. 66, 27 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Scilingo, M.C. Añón, J. Am. Oil Chem. Soc. 81, 63 (2004)CrossRefGoogle Scholar
  8. 8.
    M.C. Añón, M. de Lamballerie, F. Speroni, Innov. Food Sci. Emerg. Technol. 16, 155 (2012)CrossRefGoogle Scholar
  9. 9.
    C.A. Manassero, S. Vaudagna, M.C. Añón, F. Speroni, Food Hydrocoll. 43, 629 (2015)CrossRefGoogle Scholar
  10. 10.
    C.A. Manassero, S. Vaudagna, A.M. Sancho, M.C. Añón, F. Speroni, Innov. Food Sci. Emerg. Technol. 35, 86 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Speroni, V. Milesi, M.C. Añón, LWT-Food SciTech 43, 1265 (2010)CrossRefGoogle Scholar
  12. 12.
    AOAC, Official Methods of Analysis, 15th Edn (Association of Official Analytical Chemists, Washington, 1990)Google Scholar
  13. 13.
    M.C. Añón, M. de Lamballerie, F. Speroni, Innov. Food Sci. Emerg. Technol. 12, 443 (2011)CrossRefGoogle Scholar
  14. 14.
    J.M.S. Renkema, H. Gruppen, T. Van Vliet, J. Agric. Food Chem. 50, 6064 (2002)CrossRefGoogle Scholar
  15. 15.
    A.G. Appu Rao, M.S. Narasinga Rao, J. Agric. Food Chem. 24, 490 (1976)CrossRefGoogle Scholar
  16. 16.
    R.D. Kroll, Cereal Chem. 61, 490 (1984)Google Scholar
  17. 17.
    C.A. Manassero, E. David-Briand, S.R. Vaudagna, M. Anton, F. Speroni, Food Bioprocess Tech 11, 1125 (2018)CrossRefGoogle Scholar
  18. 18.
    C.P. Samaranayake, S.K. Sastry, Innov. Food Sci. Emerg. Technol. 17, 22 (2013)CrossRefGoogle Scholar
  19. 19.
    V.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny, Protein Struct Funct Genet 24, 81 (1996)CrossRefGoogle Scholar
  20. 20.
    D.B. Yuan, X.-Q. Yang, C.-H. Tang, W. Z-X Zheng, I. Min, S.-W. Ahmad, Yin Food Res Int 42, 700 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Petruccelli, M.C. Añón, J. Agric. Food Chem. 43, 3035 (1995)CrossRefGoogle Scholar
  22. 22.
    A. Maltais, G.E. Remondetto, R. Gonzalez, M. Subirade, J. Food Sci. 70, 67 (2005)CrossRefGoogle Scholar
  23. 23.
    F. Speroni, M.C. Añón, Food Hydrocoll. 33, 85 (2013)CrossRefGoogle Scholar
  24. 24.
    T.C. Brito-Oliveira, M. Bispo, I.C.F. Moraes, O.H. Campanella, S.C. Pinho, Food Biophys 13, 226 (2018)CrossRefGoogle Scholar
  25. 25.
    A.M. Hermansson, J. Am. Oil Chem. Soc. 63, 658 (1986)CrossRefGoogle Scholar
  26. 26.
    A.J. Pastorino, C.L. Hansen, D.J. McMahon, J. Dairy Sci. 86, 60 (2003)CrossRefGoogle Scholar
  27. 27.
    A.H. Clark, S.B. Ross-Murphy, Gels. Adv. Polym. Sci. 83, 60 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias Biológicas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) – CIC-CCT La Plata, Facultad de Ciencias ExactasUniversidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Calle 47 and 116La PlataArgentina

Personalised recommendations