Food Biophysics

, Volume 14, Issue 1, pp 60–68 | Cite as

In Vitro Digestion of caseinate and Tween 20 Emulsions

  • Eirini Koukoura
  • Martha Panagiotopoulou
  • Alexandros Pavlou
  • Vassilis Karageorgiou
  • Dimitrios  G. Fatouros
  • Chrisi Vasiliadou
  • Christos RitzoulisEmail author


In vitro digestion experiments are set-up with emulsions stabilized either with sodium caseinate and/or Tween 20, in the presence of mucin in the simulated GI fluids. The progress of charge alterations, focculation and coalescence are continuously monitored during the emulsions’ translation in the different stages of the model mouth–stomach–intestine cascade. Caseinate-stabilized emulsions become heavily flocculated and eventually coalesced into the gastric area. The causes of flocculation can be differentiated from those of coalescence: The former is due to electrostatic charge screening below the protein pI; while the latter is due to the action of gastric pepsin. Tween 20 is largely insensitive to pH changes and pepsin action, so its emulsion remains stable throughout the gastric area. Emulsions with mixed tween 20 and caseinate interfacial layers coalesce due to enzymic cleavage of caseinate, decreasing their interfacial area until the surface concentration of Tween 20 becomes large enough as to provide stabilization. The above can provide insight for the functionalization of protein and small-molecule emulsifier emulsions.


Emulsion In vitro digestion Caseinate Tween 20 Flocculation Interfaces 



CR acknowledges the Thousand Talents Program (Zhejiang Province, China).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    S.L. Turgeon, L.-E. Rioux, Food Hydrocoll 25, 1915 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Singh, a. Ye, M.J. Ferrua, Curr Op Food Sci, 3, 85 (2015)Google Scholar
  3. 3.
    B. Gleize, F. Tourniaire, L. Depezay, R. Bott, M. Nowicki, L. Albino, D. Lairon, E. Kesse-Guyot, P. Galan, S. Hercberg, P. Borel, Br J Nutr 110, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Li, A. Ye, S.J. Leeb, H. Singh, Coll Surf B 111, 80 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Salvia-Trujillo, C. Qian, O. Martin-Belloso, D.J. McClements, Food Chem 139, 878 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Shi, C. Miller, K.D. Caldwell, P. Valint, Coll Surf B 15, 303 (1999)CrossRefGoogle Scholar
  7. 7.
    M.H. Vingerhoeds, B.J. Blijdenstein, F.D. Zoet, G.A. Van Aken, Food Hydrocoll 19, 915 (2005)CrossRefGoogle Scholar
  8. 8.
    E. Silletti, M.H. Vingerhoeds, W. Norde, G.A. van Aken, Food Hydrocoll 21, 596 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Sarkar, K.K.T. Goh, H. Singh, Food Hydrocoll 23, 1270 (2009)CrossRefGoogle Scholar
  10. 10.
    Z. Rousi, C. Ritzoulis, P.D. Karayannakidis, Food Digestion 5, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Rossetti, G.E. Yabukov, J.R. Stokes, A.-M. Williamson, G.G. Fuller, Food Hydrocoll 22, 1068 (2008)CrossRefGoogle Scholar
  12. 12.
    G.F. Furtado, K.C.G. Silva, C.C.P. de Andrade, R.L. Cunha, J Food Eng 229, 86 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Ritzoulis, S. Siasios, K.D. Melikidou, C. Koukiotis, C. Vasiliadou, S. Lolakos, Food Hydrocoll 29, 382 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Sarkar, D.S. Horne, H. Singh, Int Dairy J 20, 589 (2010)CrossRefGoogle Scholar
  15. 15.
    R. Zhang, Z. Zhang, H. Zhang, E.A. Decker, D.J. McClements, Food Hydrocoll 45, 175 (2015)CrossRefGoogle Scholar
  16. 16.
    T.M. Giang, S. Le Feunteun, S. Gaucel, P. Brestaz, M. Anton, A. Meynier, I.C. Trelea, Food Hydrocoll 43, 66 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Sabouri, A.J. Wright, M. Corredig, Food Hydrocoll 69, 350 (2007)CrossRefGoogle Scholar
  18. 18.
    Q. Guo, A. Ye, M. Lad, D. Dalgleish, H. Singh, Soft Matter 10, 1214 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Day, M. Golding, M. Xu, J. Keogh, P. Klifton, T.J. Food Hydrocoll 36, 151 (2014)CrossRefGoogle Scholar
  20. 20.
    G.A. van Aken, E. Bomhof, F.D. Zoet, M. Verbeek, A. Oosterveld, Food Hydrocoll 25, 781 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D.J. McClements, O. Ménard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S.J. Wickham, W. Weitschies, A Brodkorb Food Funct 5, 1113 (2014)CrossRefGoogle Scholar
  22. 22.
    E. Dickinson, M.G. Semenova, L.E. Belyakova, A.S. Antipova, M.M. Il’in, E. Tsapkina, C. Ritzoulis, J Colloid Interface Sci 239, 87 (2001)CrossRefGoogle Scholar
  23. 23.
    H. Ma, P. Forrsell, R. Partanen, R. Seppänen, J. Buchert, H. Boer, J Agric Food Chem 57, 3800 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Chen, E. Dickinson, M. Edwards, J Text Studies 20, 377 (1999)CrossRefGoogle Scholar
  25. 25.
    S.H.E. Verkempinck, L. Salvia-Trujillo, L.G. Moens, L. Charleer, A.M. Van Loey, M.E. Hendrickx, T. Grauwet, Food Chem 246, 179 (2018)CrossRefGoogle Scholar
  26. 26.
    H.M. Farrell, R. Jimenez-Flores, G.T. Bleck, E.M. Brown, J.E. Butler, L.K. Creamer, C.L. Hicks, C.M. Hollar, K.F. Ng-Kwai-Hang, H.E. Swaisgood, J Dairy Sci 87, 1641 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Mun, E.A. Decker, D.J. McClements, Food Res Int 40, 770 (2007)CrossRefGoogle Scholar
  28. 28.
    E. Dickinson, C. Ritzoulis, M.J.W. Povey, J Colloid Interface Sci 212, 466 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food TechnologyATEI of ThessalonikiThessalonikiGreece
  2. 2.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of PharmacyAristotle University of ThessalonikiThessalonikiGreece
  4. 4.KEPAMAH, 22nd April 1PolygyrosGreece
  5. 5.School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina

Personalised recommendations